Development of a Correlative Strategy To Discover Colorectal Tumor Tissue Derived Metabolite Biomarkers in Plasma Using Untargeted Metabolomics

代谢物 代谢组学 结直肠癌 代谢物分析 生物标志物 化学 癌症 病态的 生物标志物发现 肿瘤科 内科学 计算生物学 生物信息学 医学 生物 蛋白质组学 生物化学 基因
作者
Zhuozhong Wang,Binbin Cui,Fan Zhang,Yue Yang,Xiaotao Shen,Zhong Li,Weiwei Zhao,Yuanyuan Zhang,Kui Deng,Zhiwei Rong,Kai Yang,Xiwen Yu,Kang Li,Peng Han,Zheng‐Jiang Zhu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:91 (3): 2401-2408 被引量:46
标识
DOI:10.1021/acs.analchem.8b05177
摘要

The metabolic profiling of biofluids using untargeted metabolomics provides a promising choice to discover metabolite biomarkers for clinical cancer diagnosis. However, metabolite biomarkers discovered in biofluids may not necessarily reflect the pathological status of tumor tissue, which makes these biomarkers difficult to reproduce. In this study, we developed a new analysis strategy by integrating the univariate and multivariate correlation analysis approach to discover tumor tissue derived (TTD) metabolites in plasma samples. Specifically, untargeted metabolomics was first used to profile a set of paired tissue and plasma samples from 34 colorectal cancer (CRC) patients. Next, univariate correlation analysis was used to select correlative metabolite pairs between tissue and plasma, and a random forest regression model was utilized to define 243 TTD metabolites in plasma samples. The TTD metabolites in CRC plasma were demonstrated to accurately reflect the pathological status of tumor tissue and have great potential for metabolite biomarker discovery. Accordingly, we conducted a clinical study using a set of 146 plasma samples from CRC patients and gender-matched polyp controls to discover metabolite biomarkers from TTD metabolites. As a result, eight metabolites were selected as potential biomarkers for CRC diagnosis with high sensitivity and specificity. For CRC patients after surgery, the survival risk score defined by metabolite biomarkers also performed well in predicting overall survival time (p = 0.022) and progression-free survival time (p = 0.002). In conclusion, we developed a new analysis strategy which effectively discovers tumor tissue related metabolite biomarkers in plasma for cancer diagnosis and prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu发布了新的文献求助10
刚刚
Ttttt发布了新的文献求助20
1秒前
1秒前
2秒前
乔乔那个孩子完成签到,获得积分10
2秒前
米虫完成签到,获得积分10
2秒前
包钰韬完成签到 ,获得积分10
2秒前
山野完成签到 ,获得积分10
2秒前
ppg123应助mj01采纳,获得10
3秒前
我的人生太多雨季完成签到,获得积分10
3秒前
多喝开开发布了新的文献求助10
3秒前
封妖妖完成签到,获得积分10
3秒前
4秒前
Du发布了新的文献求助10
4秒前
高脂悍婦完成签到,获得积分10
4秒前
侠医2012完成签到,获得积分0
4秒前
coke发布了新的文献求助10
4秒前
4秒前
underway发布了新的文献求助10
4秒前
4秒前
科研通AI5应助meiyugao采纳,获得10
5秒前
热心市民小红花应助夙夙采纳,获得10
5秒前
5秒前
77完成签到,获得积分10
7秒前
fksci发布了新的文献求助10
7秒前
我是老大应助XJ采纳,获得10
7秒前
8秒前
皮皮怪完成签到,获得积分10
9秒前
聪慧千万发布了新的文献求助10
9秒前
雪ノ下詩乃完成签到,获得积分10
9秒前
正直凌文完成签到,获得积分10
9秒前
LL发布了新的文献求助10
9秒前
海棠花未眠完成签到,获得积分10
11秒前
11秒前
12秒前
Happyness应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得20
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582