Development of a Correlative Strategy To Discover Colorectal Tumor Tissue Derived Metabolite Biomarkers in Plasma Using Untargeted Metabolomics

代谢物 代谢组学 结直肠癌 代谢物分析 生物标志物 化学 癌症 病态的 肿瘤科 内科学 计算生物学 生物信息学 医学 生物 生物化学
作者
Zhuozhong Wang,Binbin Cui,Fan Zhang,Yue Yang,Xiaotao Shen,Zhong Li,Weiwei Zhao,Yuanyuan Zhang,Kui Deng,Zhiwei Rong,Kai Yang,Xiwen Yu,Kang Li,Peng Han,Zheng‐Jiang Zhu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:91 (3): 2401-2408 被引量:43
标识
DOI:10.1021/acs.analchem.8b05177
摘要

The metabolic profiling of biofluids using untargeted metabolomics provides a promising choice to discover metabolite biomarkers for clinical cancer diagnosis. However, metabolite biomarkers discovered in biofluids may not necessarily reflect the pathological status of tumor tissue, which makes these biomarkers difficult to reproduce. In this study, we developed a new analysis strategy by integrating the univariate and multivariate correlation analysis approach to discover tumor tissue derived (TTD) metabolites in plasma samples. Specifically, untargeted metabolomics was first used to profile a set of paired tissue and plasma samples from 34 colorectal cancer (CRC) patients. Next, univariate correlation analysis was used to select correlative metabolite pairs between tissue and plasma, and a random forest regression model was utilized to define 243 TTD metabolites in plasma samples. The TTD metabolites in CRC plasma were demonstrated to accurately reflect the pathological status of tumor tissue and have great potential for metabolite biomarker discovery. Accordingly, we conducted a clinical study using a set of 146 plasma samples from CRC patients and gender-matched polyp controls to discover metabolite biomarkers from TTD metabolites. As a result, eight metabolites were selected as potential biomarkers for CRC diagnosis with high sensitivity and specificity. For CRC patients after surgery, the survival risk score defined by metabolite biomarkers also performed well in predicting overall survival time (p = 0.022) and progression-free survival time (p = 0.002). In conclusion, we developed a new analysis strategy which effectively discovers tumor tissue related metabolite biomarkers in plasma for cancer diagnosis and prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助左友铭采纳,获得10
刚刚
烟花应助会飞的野马采纳,获得10
1秒前
1秒前
2秒前
HEIKU应助DE2022采纳,获得10
2秒前
ranan发布了新的文献求助10
3秒前
香蕉觅云应助能干豆芽采纳,获得10
3秒前
1376发布了新的文献求助10
3秒前
张月鹿关注了科研通微信公众号
4秒前
CodeCraft应助lyn采纳,获得10
4秒前
4秒前
4秒前
5秒前
日出完成签到,获得积分10
5秒前
6秒前
Kiwi发布了新的文献求助10
6秒前
7秒前
日出发布了新的文献求助10
7秒前
王则前完成签到,获得积分20
7秒前
7秒前
7秒前
8秒前
甜崽小肉丸完成签到,获得积分10
9秒前
XIAOXIAO发布了新的文献求助10
10秒前
王则前发布了新的文献求助10
10秒前
小明完成签到,获得积分10
10秒前
一杯六一完成签到,获得积分10
11秒前
背书强发布了新的文献求助10
12秒前
谨川完成签到,获得积分20
12秒前
lixc发布了新的文献求助10
13秒前
DE2022发布了新的文献求助10
14秒前
雪白的笑槐完成签到,获得积分10
16秒前
开着飞机骑拖拉机完成签到,获得积分10
16秒前
斯文败类应助烂漫元彤采纳,获得10
17秒前
17秒前
ranan完成签到,获得积分10
17秒前
老高完成签到,获得积分10
17秒前
隐形曼青应助lixc采纳,获得10
20秒前
PhD_HanWu完成签到,获得积分20
22秒前
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247794
求助须知:如何正确求助?哪些是违规求助? 2891053
关于积分的说明 8265876
捐赠科研通 2559283
什么是DOI,文献DOI怎么找? 1388075
科研通“疑难数据库(出版商)”最低求助积分说明 650683
邀请新用户注册赠送积分活动 627577