Nonadiabatic molecular dynamics with decoherence and detailed balance under a density matrix ensemble formalism

量子退相干 密度矩阵 物理 绝热过程 明细余额 量子力学 量子 统计物理学
作者
Jun Kang,Lin‐Wang Wang
出处
期刊:Physical review 卷期号:99 (22) 被引量:21
标识
DOI:10.1103/physrevb.99.224303
摘要

The mixed quantum-classical nonadiabatic molecular dynamics (NAMD) is a powerful tool to study many phenomena, especially ultrafast carrier transport and cooling. Carrier decoherence and detailed balance are two major issues in NAMD. So far, there is no computationally inexpensive approach to incorporate both effects. While the decoherence effect can be easily included in the state density matrix formalism and the detailed balance can be included in surface hopping or the wave function collapse approach, it is difficult to include both of them in a unified formalism. In this work we introduce a state density matrix formalism (referred to as P-matrix) including both the decoherence and detailed balance effects for NAMD. This method is able to explicitly treat the decoherence between different pairs of adiabatic states. Moreover, the off-diagonal density matrix elements are divided into two parts, corresponding to energy-increasing and energy-decreasing transitions. The detailed balance is then enforced by a Boltzmann factor applied to the energy-increasing transition part. The P-matrix formalism is applied to study hot-hole cooling and transfer processes in Si quantum dot (QD) systems. The calculated hot-carrier relaxation time is consistent with experiments. In a QD-pair system, the hot-hole cooling time shows weak dependence on the QD spacing. However, the hot-carrier transfer rate from one QD to another is found to decrease exponentially with the QD-QD distance. When the QD spacing is small ($\ensuremath{\sim}1$ nm), the hot-carrier transfer can be very efficient. It is also shown that the explicit treatment of decoherence time is important in order to treat this hot-carrier transfer correctly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彼岸发布了新的文献求助10
刚刚
1秒前
赵姐姐完成签到 ,获得积分10
3秒前
xiao双月发布了新的文献求助10
3秒前
4秒前
无花果应助Shaw采纳,获得10
4秒前
小黄发布了新的文献求助10
4秒前
5秒前
5秒前
姗姗完成签到,获得积分10
5秒前
雪飞杨发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
7秒前
朱颜发布了新的文献求助10
7秒前
YL发布了新的文献求助10
8秒前
8秒前
毛123完成签到,获得积分10
8秒前
喵了个咪发布了新的文献求助10
9秒前
华仔应助lupeichun采纳,获得10
9秒前
9秒前
10秒前
高贵以南完成签到,获得积分10
10秒前
淡定的仙人掌完成签到,获得积分10
10秒前
1325850238发布了新的文献求助10
11秒前
zly发布了新的文献求助10
11秒前
11秒前
外向一一发布了新的文献求助30
11秒前
隐形曼青应助Wenpandaen采纳,获得10
12秒前
12秒前
12秒前
孟孟发布了新的文献求助10
14秒前
tough发布了新的文献求助10
14秒前
14秒前
nusiew发布了新的文献求助10
14秒前
依依完成签到,获得积分10
15秒前
逆鳞发布了新的文献求助10
15秒前
可爱的函函应助LYB吕采纳,获得10
15秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655