Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning

外推法 深度学习 人工智能 计算机科学 机器学习 一般化 拉格朗日 任务(项目管理) 数学 工程类 数学分析 系统工程 数学物理
作者
Michael Lutter,Christian Ritter,Jan Peters
摘要

Deep learning has achieved astonishing results on many tasks with large amounts of data and generalization within the proximity of training data. For many important real-world applications, these requirements are unfeasible and additional prior knowledge on the task domain is required to overcome the resulting problems. In particular, learning physics models for model-based control requires robust extrapolation from fewer samples - often collected online in real-time - and model errors may lead to drastic damages of the system. Directly incorporating physical insight has enabled us to obtain a novel deep model learning approach that extrapolates well while requiring fewer samples. As a first example, we propose Deep Lagrangian Networks (DeLaN) as a deep network structure upon which Lagrangian Mechanics have been imposed. DeLaN can learn the equations of motion of a mechanical system (i.e., system dynamics) with a deep network efficiently while ensuring physical plausibility. The resulting DeLaN network performs very well at robot tracking control. The proposed method did not only outperform previous model learning approaches at learning speed but exhibits substantially improved and more robust extrapolation to novel trajectories and learns online in real-time
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21完成签到,获得积分10
刚刚
刚刚
1秒前
万能图书馆应助壮观寒荷采纳,获得10
2秒前
杳鸢应助21采纳,获得10
3秒前
可爱的函函应助温温采纳,获得10
3秒前
junzhu完成签到,获得积分10
3秒前
Catalina_S完成签到,获得积分0
3秒前
wanci应助郝出站采纳,获得30
3秒前
Ava应助小花生zz采纳,获得30
4秒前
闵卷完成签到,获得积分10
4秒前
萝卜头完成签到,获得积分10
4秒前
0526Test完成签到 ,获得积分10
5秒前
5秒前
李健的小迷弟应助RUSTY采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
在水一方应助皮皮采纳,获得10
6秒前
6秒前
JamesPei应助lxy采纳,获得10
7秒前
7秒前
7秒前
8秒前
丁丁发布了新的文献求助10
8秒前
酷波er应助跳跃的指甲油采纳,获得10
9秒前
Masche完成签到,获得积分10
10秒前
zhou发布了新的文献求助10
11秒前
小蘑菇应助长心采纳,获得30
11秒前
11秒前
Pig-prodigy完成签到,获得积分10
11秒前
下南发布了新的文献求助30
11秒前
无情听南发布了新的文献求助10
12秒前
12秒前
14秒前
Amber完成签到,获得积分10
14秒前
qqqq发布了新的文献求助20
14秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952383
求助须知:如何正确求助?哪些是违规求助? 3497737
关于积分的说明 11088744
捐赠科研通 3228363
什么是DOI,文献DOI怎么找? 1784838
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303