Balanced Distribution Adaptation for Transfer Learning

杠杆(统计) 学习迁移 计算机科学 域适应 适应(眼睛) 条件概率分布 分布(数学) 分歧(语言学) 领域(数学分析) 人工智能 机器学习 传输(计算) 边际分布 班级(哲学) 数学 随机变量 计量经济学 统计 哲学 数学分析 物理 光学 并行计算 分类器(UML) 语言学
作者
Jindong Wang,Yiqiang Chen,Shuji Hao,Wenjie Feng,Zhiqi Shen
标识
DOI:10.1109/icdm.2017.150
摘要

Transfer learning has achieved promising results by leveraging knowledge from the source domain to annotate the target domain which has few or none labels. Existing methods often seek to minimize the distribution divergence between domains, such as the marginal distribution, the conditional distribution or both. However, these two distances are often treated equally in existing algorithms, which will result in poor performance in real applications. Moreover, existing methods usually assume that the dataset is balanced, which also limits their performances on imbalanced tasks that are quite common in real problems. To tackle the distribution adaptation problem, in this paper, we propose a novel transfer learning approach, named as Balanced Distribution Adaptation (BDA), which can adaptively leverage the importance of the marginal and conditional distribution discrepancies, and several existing methods can be treated as special cases of BDA. Based on BDA, we also propose a novel Weighted Balanced Distribution Adaptation (W-BDA) algorithm to tackle the class imbalance issue in transfer learning. W-BDA not only considers the distribution adaptation between domains but also adaptively changes the weight of each class. To evaluate the proposed methods, we conduct extensive experiments on several transfer learning tasks, which demonstrate the effectiveness of our proposed algorithms over several state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃人陈发布了新的文献求助30
刚刚
酷炫幻桃发布了新的文献求助30
1秒前
cz发布了新的文献求助10
2秒前
3秒前
大个应助任成艳采纳,获得10
3秒前
宝宝发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
夏日天空发布了新的文献求助20
3秒前
4秒前
zzzrrr发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
害羞凤灵发布了新的文献求助10
8秒前
这学真难读下去完成签到,获得积分10
8秒前
汏流萤发布了新的文献求助10
9秒前
tao发布了新的文献求助10
9秒前
10秒前
sniffgo发布了新的文献求助10
12秒前
斯文败类应助fzh采纳,获得10
12秒前
14秒前
pajfew应助夏日天空采纳,获得20
14秒前
任成艳发布了新的文献求助10
15秒前
吃人陈完成签到,获得积分10
15秒前
15秒前
16秒前
Stella应助优美紫槐采纳,获得10
16秒前
钱塘郎中完成签到,获得积分0
17秒前
今后应助大陈小橙小小陈采纳,获得10
18秒前
18秒前
18秒前
无极微光应助爱笑的冷风采纳,获得40
18秒前
无情剑愁发布了新的文献求助30
18秒前
大力发布了新的文献求助20
20秒前
20秒前
20秒前
Flllllll完成签到,获得积分10
22秒前
英姑应助害羞笑白采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577756
求助须知:如何正确求助?哪些是违规求助? 4662789
关于积分的说明 14743583
捐赠科研通 4603478
什么是DOI,文献DOI怎么找? 2526478
邀请新用户注册赠送积分活动 1496172
关于科研通互助平台的介绍 1465573