Balanced Distribution Adaptation for Transfer Learning

杠杆(统计) 学习迁移 计算机科学 域适应 适应(眼睛) 条件概率分布 分布(数学) 分歧(语言学) 领域(数学分析) 人工智能 机器学习 传输(计算) 边际分布 班级(哲学) 数学 随机变量 计量经济学 统计 哲学 数学分析 物理 光学 并行计算 分类器(UML) 语言学
作者
Jindong Wang,Yiqiang Chen,Shuji Hao,Wenjie Feng,Zhiqi Shen
标识
DOI:10.1109/icdm.2017.150
摘要

Transfer learning has achieved promising results by leveraging knowledge from the source domain to annotate the target domain which has few or none labels. Existing methods often seek to minimize the distribution divergence between domains, such as the marginal distribution, the conditional distribution or both. However, these two distances are often treated equally in existing algorithms, which will result in poor performance in real applications. Moreover, existing methods usually assume that the dataset is balanced, which also limits their performances on imbalanced tasks that are quite common in real problems. To tackle the distribution adaptation problem, in this paper, we propose a novel transfer learning approach, named as Balanced Distribution Adaptation (BDA), which can adaptively leverage the importance of the marginal and conditional distribution discrepancies, and several existing methods can be treated as special cases of BDA. Based on BDA, we also propose a novel Weighted Balanced Distribution Adaptation (W-BDA) algorithm to tackle the class imbalance issue in transfer learning. W-BDA not only considers the distribution adaptation between domains but also adaptively changes the weight of each class. To evaluate the proposed methods, we conduct extensive experiments on several transfer learning tasks, which demonstrate the effectiveness of our proposed algorithms over several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助有魅力的沂采纳,获得10
1秒前
脑洞疼应助vvv采纳,获得10
1秒前
所所应助土三水采纳,获得10
1秒前
2秒前
慕青应助BYN采纳,获得10
2秒前
lyz666完成签到,获得积分10
2秒前
2秒前
Cora完成签到,获得积分10
2秒前
3秒前
荼柒完成签到,获得积分10
4秒前
ZYLZYL完成签到,获得积分10
4秒前
Yy发布了新的文献求助10
4秒前
wanci应助疏桐采纳,获得10
4秒前
5秒前
5秒前
doudou完成签到,获得积分10
5秒前
mc发布了新的文献求助10
7秒前
7秒前
荒野发布了新的文献求助30
7秒前
玥来玥好发布了新的文献求助10
7秒前
烟花应助xuxieyu采纳,获得10
7秒前
8秒前
8秒前
辍学回家喂猪完成签到,获得积分20
9秒前
Young发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
Amor完成签到,获得积分10
10秒前
huihuiwang完成签到,获得积分10
11秒前
刘萌萌完成签到,获得积分10
11秒前
王茶茶发布了新的文献求助10
11秒前
Connie发布了新的文献求助10
11秒前
vvv发布了新的文献求助10
11秒前
12秒前
jhhh完成签到,获得积分10
12秒前
seata发布了新的文献求助10
12秒前
13秒前
斯文煎蛋发布了新的文献求助10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
金属中的晶界偏聚 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296818
求助须知:如何正确求助?哪些是违规求助? 2932518
关于积分的说明 8457314
捐赠科研通 2605021
什么是DOI,文献DOI怎么找? 1422147
科研通“疑难数据库(出版商)”最低求助积分说明 661308
邀请新用户注册赠送积分活动 644397