Balanced Distribution Adaptation for Transfer Learning

杠杆(统计) 学习迁移 计算机科学 域适应 适应(眼睛) 条件概率分布 分布(数学) 分歧(语言学) 领域(数学分析) 人工智能 机器学习 传输(计算) 边际分布 班级(哲学) 数学 随机变量 计量经济学 统计 数学分析 语言学 哲学 物理 并行计算 分类器(UML) 光学
作者
Jindong Wang,Yiqiang Chen,Shuji Hao,Wenjie Feng,Zhiqi Shen
标识
DOI:10.1109/icdm.2017.150
摘要

Transfer learning has achieved promising results by leveraging knowledge from the source domain to annotate the target domain which has few or none labels. Existing methods often seek to minimize the distribution divergence between domains, such as the marginal distribution, the conditional distribution or both. However, these two distances are often treated equally in existing algorithms, which will result in poor performance in real applications. Moreover, existing methods usually assume that the dataset is balanced, which also limits their performances on imbalanced tasks that are quite common in real problems. To tackle the distribution adaptation problem, in this paper, we propose a novel transfer learning approach, named as Balanced Distribution Adaptation (BDA), which can adaptively leverage the importance of the marginal and conditional distribution discrepancies, and several existing methods can be treated as special cases of BDA. Based on BDA, we also propose a novel Weighted Balanced Distribution Adaptation (W-BDA) algorithm to tackle the class imbalance issue in transfer learning. W-BDA not only considers the distribution adaptation between domains but also adaptively changes the weight of each class. To evaluate the proposed methods, we conduct extensive experiments on several transfer learning tasks, which demonstrate the effectiveness of our proposed algorithms over several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰花之狱发布了新的文献求助10
刚刚
xiaojia发布了新的文献求助10
1秒前
逍遥游发布了新的文献求助10
1秒前
vvvvvirus完成签到,获得积分10
1秒前
松鼠15111完成签到,获得积分10
2秒前
JamesPei应助ttsx采纳,获得10
3秒前
叶赛文完成签到,获得积分10
3秒前
科研通AI6应助酷炫的啤酒采纳,获得10
3秒前
密林小叶子完成签到,获得积分10
3秒前
sss三发布了新的文献求助10
4秒前
4秒前
8秒前
爆米花应助wuwu采纳,获得10
9秒前
自然的剑封完成签到,获得积分10
10秒前
温柔从云发布了新的文献求助10
10秒前
11秒前
13秒前
科研通AI5应助冰花之狱采纳,获得10
14秒前
15秒前
杰杰杰杰发布了新的文献求助10
15秒前
清秀的乐儿完成签到,获得积分20
16秒前
ttsx发布了新的文献求助10
17秒前
Yukimio发布了新的文献求助10
17秒前
wq发布了新的文献求助10
18秒前
深深深海完成签到,获得积分10
20秒前
不想干活应助RSC采纳,获得10
20秒前
秋山落叶完成签到,获得积分10
21秒前
AAA下水工王哥完成签到,获得积分10
22秒前
加菲猫688发布了新的文献求助10
22秒前
22秒前
Orange应助Yukimio采纳,获得10
23秒前
Jasper应助hh采纳,获得10
25秒前
zhanglh完成签到 ,获得积分10
25秒前
xmuchem发布了新的文献求助10
28秒前
29秒前
31秒前
杰杰杰杰完成签到,获得积分10
32秒前
666plus完成签到,获得积分10
33秒前
小池同学完成签到,获得积分10
36秒前
那种发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546119
求助须知:如何正确求助?哪些是违规求助? 3977536
关于积分的说明 12316458
捐赠科研通 3645902
什么是DOI,文献DOI怎么找? 2007838
邀请新用户注册赠送积分活动 1043384
科研通“疑难数据库(出版商)”最低求助积分说明 932142