已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of Multiscale Learning Neural Network Based on CNN in Bearing Fault Diagnosis

人工智能 卷积神经网络 模式识别(心理学) 人工神经网络 支持向量机 特征提取 计算机科学 卷积(计算机科学) 过程(计算) 断层(地质) 数据集 故障排除 深度学习 维数(图论) 机器学习 地质学 数学 操作系统 地震学 纯数学
作者
Daichao Wang,Qingwen Guo,Yan Song,Shengyao Gao,Yibin Li
出处
期刊:Journal of Signal Processing Systems [Springer Science+Business Media]
卷期号:91 (10): 1205-1217 被引量:85
标识
DOI:10.1007/s11265-019-01461-w
摘要

With the application of intelligent manufacturing becoming more and more widely, the losses caused by mechanical faults of equipment increase. Identifying and troubleshooting faults in an early stage are important. The process of traditional data-driven fault diagnosis method includes data acquisition, fault classification, and feature extraction, in which classification accuracy is directly affected by the result of feature extraction. As a common deep learning method in image recognition, the convolutional neural network (CNN) demonstrates good performance in fault diagnosis. CNN can adaptively extract features from original signals and eliminate the effect of conventional handcrafted features. In this study, a multiscale learning neural network that contains one-dimension (1D) and two-dimension (2D) convolution channels is proposed. The network can learn the local correlation of adjacent and nonadjacent intervals in periodic signals, such as vibration data. The Paderborn data set is came into use to demonstrate the classification accuracy of the method which is brought forward, which includes three conditions of healthy, outer ring (OR) damage and inner ring (IR) damage. The classification accuracy of the method which is put forward is up to 98.58%. The same dataset was applied to test the classification accuracy of support vector machine (SVM) for comparison. And the proposed multiscale learning neural network demonstrates considerable improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满眼星陈发布了新的文献求助10
1秒前
1秒前
hp发布了新的文献求助10
1秒前
gooooood完成签到 ,获得积分10
2秒前
ZJX应助刻苦的哑铃采纳,获得10
3秒前
小可爱啵完成签到,获得积分10
3秒前
夏秋完成签到,获得积分10
4秒前
欢欢完成签到,获得积分10
4秒前
5秒前
jason0023发布了新的文献求助10
8秒前
搞笑煎蛋完成签到 ,获得积分10
8秒前
欢欢发布了新的文献求助10
9秒前
andrele发布了新的文献求助10
12秒前
13秒前
欣__完成签到 ,获得积分10
15秒前
阳静完成签到 ,获得积分10
15秒前
15秒前
ding应助沿途东行采纳,获得10
15秒前
ssc发布了新的文献求助10
16秒前
酷波er应助1206425219密采纳,获得10
16秒前
宁秘发布了新的文献求助10
18秒前
李健的小迷弟应助test采纳,获得10
18秒前
大头娃娃发布了新的文献求助10
20秒前
Owen应助科研通管家采纳,获得10
21秒前
李健应助科研通管家采纳,获得10
21秒前
冯佳祥完成签到,获得积分10
21秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
乐乐应助科研通管家采纳,获得30
22秒前
大模型应助科研通管家采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
22秒前
24秒前
宁秘完成签到,获得积分10
24秒前
所所应助辰叶采纳,获得10
24秒前
科研通AI2S应助EMC采纳,获得10
27秒前
Avvei完成签到,获得积分10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339