Application of Multiscale Learning Neural Network Based on CNN in Bearing Fault Diagnosis

人工智能 卷积神经网络 模式识别(心理学) 人工神经网络 支持向量机 特征提取 计算机科学 卷积(计算机科学) 过程(计算) 断层(地质) 数据集 故障排除 深度学习 维数(图论) 机器学习 地质学 数学 操作系统 地震学 纯数学
作者
Daichao Wang,Qingwen Guo,Yan Song,Shengyao Gao,Yibin Li
出处
期刊:Journal of Signal Processing Systems [Springer Science+Business Media]
卷期号:91 (10): 1205-1217 被引量:85
标识
DOI:10.1007/s11265-019-01461-w
摘要

With the application of intelligent manufacturing becoming more and more widely, the losses caused by mechanical faults of equipment increase. Identifying and troubleshooting faults in an early stage are important. The process of traditional data-driven fault diagnosis method includes data acquisition, fault classification, and feature extraction, in which classification accuracy is directly affected by the result of feature extraction. As a common deep learning method in image recognition, the convolutional neural network (CNN) demonstrates good performance in fault diagnosis. CNN can adaptively extract features from original signals and eliminate the effect of conventional handcrafted features. In this study, a multiscale learning neural network that contains one-dimension (1D) and two-dimension (2D) convolution channels is proposed. The network can learn the local correlation of adjacent and nonadjacent intervals in periodic signals, such as vibration data. The Paderborn data set is came into use to demonstrate the classification accuracy of the method which is brought forward, which includes three conditions of healthy, outer ring (OR) damage and inner ring (IR) damage. The classification accuracy of the method which is put forward is up to 98.58%. The same dataset was applied to test the classification accuracy of support vector machine (SVM) for comparison. And the proposed multiscale learning neural network demonstrates considerable improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰糖完成签到,获得积分10
2秒前
2秒前
4秒前
6秒前
8秒前
吴海娇完成签到,获得积分10
9秒前
wanci应助猴哥采纳,获得10
9秒前
zhuyutian完成签到,获得积分10
10秒前
潺潺流水发布了新的文献求助10
10秒前
包子完成签到 ,获得积分10
11秒前
南客行给南客行的求助进行了留言
11秒前
13秒前
13秒前
大模型应助doby采纳,获得10
14秒前
15秒前
15秒前
热心擎宇完成签到,获得积分10
17秒前
Ca发布了新的文献求助10
17秒前
19秒前
22秒前
百里如雪完成签到,获得积分10
22秒前
Akim应助拜拜拜采纳,获得10
24秒前
zhangyu应助张张采纳,获得10
24秒前
潺潺流水完成签到,获得积分10
25秒前
26秒前
群山完成签到 ,获得积分10
26秒前
doby发布了新的文献求助10
28秒前
环游水星发布了新的文献求助10
29秒前
王洪宇发布了新的文献求助10
30秒前
ding应助优秀的枕头采纳,获得10
30秒前
31秒前
33秒前
繁荣的康乃馨应助新新采纳,获得10
33秒前
35秒前
QL发布了新的文献求助10
37秒前
37秒前
37秒前
猴哥发布了新的文献求助10
38秒前
39秒前
ramon发布了新的文献求助10
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992986
求助须知:如何正确求助?哪些是违规求助? 3533726
关于积分的说明 11263679
捐赠科研通 3273550
什么是DOI,文献DOI怎么找? 1806095
邀请新用户注册赠送积分活动 882942
科研通“疑难数据库(出版商)”最低求助积分说明 809629