Application of Multiscale Learning Neural Network Based on CNN in Bearing Fault Diagnosis

人工智能 卷积神经网络 模式识别(心理学) 人工神经网络 支持向量机 特征提取 计算机科学 卷积(计算机科学) 过程(计算) 断层(地质) 数据集 故障排除 深度学习 维数(图论) 机器学习 地质学 数学 操作系统 地震学 纯数学
作者
Daichao Wang,Qingwen Guo,Yan Song,Shengyao Gao,Yibin Li
出处
期刊:Journal of Signal Processing Systems [Springer Science+Business Media]
卷期号:91 (10): 1205-1217 被引量:85
标识
DOI:10.1007/s11265-019-01461-w
摘要

With the application of intelligent manufacturing becoming more and more widely, the losses caused by mechanical faults of equipment increase. Identifying and troubleshooting faults in an early stage are important. The process of traditional data-driven fault diagnosis method includes data acquisition, fault classification, and feature extraction, in which classification accuracy is directly affected by the result of feature extraction. As a common deep learning method in image recognition, the convolutional neural network (CNN) demonstrates good performance in fault diagnosis. CNN can adaptively extract features from original signals and eliminate the effect of conventional handcrafted features. In this study, a multiscale learning neural network that contains one-dimension (1D) and two-dimension (2D) convolution channels is proposed. The network can learn the local correlation of adjacent and nonadjacent intervals in periodic signals, such as vibration data. The Paderborn data set is came into use to demonstrate the classification accuracy of the method which is brought forward, which includes three conditions of healthy, outer ring (OR) damage and inner ring (IR) damage. The classification accuracy of the method which is put forward is up to 98.58%. The same dataset was applied to test the classification accuracy of support vector machine (SVM) for comparison. And the proposed multiscale learning neural network demonstrates considerable improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ALVIN发布了新的文献求助10
1秒前
2秒前
桐桐应助research_cow采纳,获得10
3秒前
文献发布了新的文献求助10
3秒前
玛卡巴卡完成签到,获得积分10
3秒前
4秒前
SoChic发布了新的文献求助10
4秒前
4秒前
xu发布了新的文献求助20
5秒前
5秒前
5秒前
上官若男应助诚心的梅采纳,获得10
6秒前
6秒前
万能图书馆应助华天九四采纳,获得10
6秒前
苏速完成签到,获得积分10
6秒前
逆羽阿水完成签到,获得积分20
7秒前
闷闷应助guozizi采纳,获得10
7秒前
7秒前
染兮发布了新的文献求助10
8秒前
8秒前
10秒前
10秒前
英俊青旋完成签到,获得积分10
10秒前
11秒前
agony完成签到,获得积分10
11秒前
小蘑菇应助mushini采纳,获得10
11秒前
闷闷应助务实水绿采纳,获得10
13秒前
AAAaa完成签到,获得积分10
13秒前
13秒前
哇哈哈发布了新的文献求助10
14秒前
Barry发布了新的文献求助10
14秒前
Kimo发布了新的文献求助10
14秒前
852应助呼呼哈嘿采纳,获得10
14秒前
14秒前
16秒前
ljlwh完成签到 ,获得积分10
16秒前
16秒前
16秒前
隐形曼青应助Lsy采纳,获得10
16秒前
coolkid完成签到 ,获得积分0
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181974
求助须知:如何正确求助?哪些是违规求助? 4368782
关于积分的说明 13604227
捐赠科研通 4220207
什么是DOI,文献DOI怎么找? 2314547
邀请新用户注册赠送积分活动 1313259
关于科研通互助平台的介绍 1261945