Application of Multiscale Learning Neural Network Based on CNN in Bearing Fault Diagnosis

人工智能 卷积神经网络 模式识别(心理学) 人工神经网络 支持向量机 特征提取 计算机科学 卷积(计算机科学) 过程(计算) 断层(地质) 数据集 故障排除 深度学习 维数(图论) 机器学习 地质学 数学 操作系统 地震学 纯数学
作者
Daichao Wang,Qingwen Guo,Yan Song,Shengyao Gao,Yibin Li
出处
期刊:Journal of Signal Processing Systems [Springer Science+Business Media]
卷期号:91 (10): 1205-1217 被引量:85
标识
DOI:10.1007/s11265-019-01461-w
摘要

With the application of intelligent manufacturing becoming more and more widely, the losses caused by mechanical faults of equipment increase. Identifying and troubleshooting faults in an early stage are important. The process of traditional data-driven fault diagnosis method includes data acquisition, fault classification, and feature extraction, in which classification accuracy is directly affected by the result of feature extraction. As a common deep learning method in image recognition, the convolutional neural network (CNN) demonstrates good performance in fault diagnosis. CNN can adaptively extract features from original signals and eliminate the effect of conventional handcrafted features. In this study, a multiscale learning neural network that contains one-dimension (1D) and two-dimension (2D) convolution channels is proposed. The network can learn the local correlation of adjacent and nonadjacent intervals in periodic signals, such as vibration data. The Paderborn data set is came into use to demonstrate the classification accuracy of the method which is brought forward, which includes three conditions of healthy, outer ring (OR) damage and inner ring (IR) damage. The classification accuracy of the method which is put forward is up to 98.58%. The same dataset was applied to test the classification accuracy of support vector machine (SVM) for comparison. And the proposed multiscale learning neural network demonstrates considerable improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123应助雷涵晶采纳,获得10
1秒前
1秒前
Bai_shao完成签到,获得积分10
1秒前
2秒前
Daily发布了新的文献求助10
2秒前
阳佟水蓉完成签到,获得积分10
2秒前
2秒前
英姑应助鲜艳的手链采纳,获得10
3秒前
3秒前
3秒前
4秒前
欣欣完成签到 ,获得积分10
4秒前
香蕉觅云应助龚仕杰采纳,获得10
4秒前
淡淡芷天应助球球采纳,获得10
4秒前
Zhang完成签到,获得积分10
4秒前
邱雪辉完成签到,获得积分10
4秒前
5秒前
隐形曼青应助刘欣采纳,获得10
5秒前
newsl完成签到,获得积分10
5秒前
6秒前
6秒前
隐形曼青应助yy湫采纳,获得10
6秒前
shalom完成签到,获得积分10
6秒前
Hello应助yier采纳,获得10
7秒前
默默发布了新的文献求助10
7秒前
7秒前
浮浮世世发布了新的文献求助10
7秒前
8秒前
吕坏发布了新的文献求助10
8秒前
WZQ发布了新的文献求助10
8秒前
佳佳528发布了新的文献求助10
8秒前
甜甜的向雪完成签到,获得积分10
8秒前
8秒前
9秒前
鲤鱼香发布了新的文献求助10
9秒前
9秒前
9秒前
小新完成签到,获得积分10
9秒前
9秒前
科研通AI6应助sa采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098708
求助须知:如何正确求助?哪些是违规求助? 4310813
关于积分的说明 13432372
捐赠科研通 4138156
什么是DOI,文献DOI怎么找? 2267123
邀请新用户注册赠送积分活动 1270164
关于科研通互助平台的介绍 1206454