Application of Multiscale Learning Neural Network Based on CNN in Bearing Fault Diagnosis

人工智能 卷积神经网络 模式识别(心理学) 人工神经网络 支持向量机 特征提取 计算机科学 卷积(计算机科学) 过程(计算) 断层(地质) 数据集 故障排除 深度学习 维数(图论) 机器学习 地质学 数学 操作系统 地震学 纯数学
作者
Daichao Wang,Qingwen Guo,Yan Song,Shengyao Gao,Yibin Li
出处
期刊:Journal of Signal Processing Systems [Springer Science+Business Media]
卷期号:91 (10): 1205-1217 被引量:85
标识
DOI:10.1007/s11265-019-01461-w
摘要

With the application of intelligent manufacturing becoming more and more widely, the losses caused by mechanical faults of equipment increase. Identifying and troubleshooting faults in an early stage are important. The process of traditional data-driven fault diagnosis method includes data acquisition, fault classification, and feature extraction, in which classification accuracy is directly affected by the result of feature extraction. As a common deep learning method in image recognition, the convolutional neural network (CNN) demonstrates good performance in fault diagnosis. CNN can adaptively extract features from original signals and eliminate the effect of conventional handcrafted features. In this study, a multiscale learning neural network that contains one-dimension (1D) and two-dimension (2D) convolution channels is proposed. The network can learn the local correlation of adjacent and nonadjacent intervals in periodic signals, such as vibration data. The Paderborn data set is came into use to demonstrate the classification accuracy of the method which is brought forward, which includes three conditions of healthy, outer ring (OR) damage and inner ring (IR) damage. The classification accuracy of the method which is put forward is up to 98.58%. The same dataset was applied to test the classification accuracy of support vector machine (SVM) for comparison. And the proposed multiscale learning neural network demonstrates considerable improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
Akiba完成签到,获得积分10
1秒前
完美世界应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
Wianiu应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
宇宙法完成签到,获得积分10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
斯文明杰发布了新的文献求助10
4秒前
天天快乐应助勾晓彤采纳,获得10
4秒前
4秒前
Profeto应助胡先生的小口袋采纳,获得10
5秒前
Profeto应助胡先生的小口袋采纳,获得10
6秒前
科研q完成签到 ,获得积分10
6秒前
6秒前
6秒前
Ava应助zhuzhu采纳,获得10
6秒前
6秒前
节步青发布了新的文献求助10
8秒前
小邢发布了新的文献求助10
8秒前
桐桐应助端庄煎饼采纳,获得10
9秒前
里大炮发布了新的文献求助10
10秒前
wozai发布了新的文献求助10
10秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215597
求助须知:如何正确求助?哪些是违规求助? 4390701
关于积分的说明 13670504
捐赠科研通 4252590
什么是DOI,文献DOI怎么找? 2333220
邀请新用户注册赠送积分活动 1330838
关于科研通互助平台的介绍 1284652