Application of Multiscale Learning Neural Network Based on CNN in Bearing Fault Diagnosis

人工智能 卷积神经网络 模式识别(心理学) 人工神经网络 支持向量机 特征提取 计算机科学 卷积(计算机科学) 过程(计算) 断层(地质) 数据集 故障排除 深度学习 维数(图论) 机器学习 地质学 数学 操作系统 地震学 纯数学
作者
Daichao Wang,Qingwen Guo,Yan Song,Shengyao Gao,Yibin Li
出处
期刊:Journal of Signal Processing Systems [Springer Science+Business Media]
卷期号:91 (10): 1205-1217 被引量:85
标识
DOI:10.1007/s11265-019-01461-w
摘要

With the application of intelligent manufacturing becoming more and more widely, the losses caused by mechanical faults of equipment increase. Identifying and troubleshooting faults in an early stage are important. The process of traditional data-driven fault diagnosis method includes data acquisition, fault classification, and feature extraction, in which classification accuracy is directly affected by the result of feature extraction. As a common deep learning method in image recognition, the convolutional neural network (CNN) demonstrates good performance in fault diagnosis. CNN can adaptively extract features from original signals and eliminate the effect of conventional handcrafted features. In this study, a multiscale learning neural network that contains one-dimension (1D) and two-dimension (2D) convolution channels is proposed. The network can learn the local correlation of adjacent and nonadjacent intervals in periodic signals, such as vibration data. The Paderborn data set is came into use to demonstrate the classification accuracy of the method which is brought forward, which includes three conditions of healthy, outer ring (OR) damage and inner ring (IR) damage. The classification accuracy of the method which is put forward is up to 98.58%. The same dataset was applied to test the classification accuracy of support vector machine (SVM) for comparison. And the proposed multiscale learning neural network demonstrates considerable improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
海绵宝宝发布了新的文献求助10
1秒前
1秒前
小蘑菇应助02采纳,获得10
1秒前
哆啦的空间站应助02采纳,获得10
2秒前
哆啦的空间站应助02采纳,获得10
2秒前
哆啦的空间站应助02采纳,获得10
2秒前
哆啦的空间站应助02采纳,获得10
2秒前
木蝴蝶完成签到,获得积分10
2秒前
萌宠发布了新的文献求助10
2秒前
2秒前
慕青应助月半战戈采纳,获得10
4秒前
脑洞疼应助科研你疼疼我采纳,获得10
4秒前
5秒前
5秒前
5秒前
Richard完成签到,获得积分10
6秒前
XCXC完成签到,获得积分10
6秒前
在人中完成签到,获得积分10
7秒前
7秒前
7秒前
冷静安露发布了新的文献求助10
8秒前
8秒前
爆米花应助灼灼朗朗采纳,获得10
8秒前
in完成签到,获得积分10
8秒前
上官若男应助木易采纳,获得10
8秒前
9秒前
小二郎应助GGGG采纳,获得10
9秒前
丘比特应助晨晨采纳,获得10
9秒前
bkagyin应助小鱼丸采纳,获得50
10秒前
crc发布了新的文献求助10
10秒前
11秒前
wenrounan发布了新的文献求助10
11秒前
LX关注了科研通微信公众号
11秒前
11秒前
科研式发布了新的文献求助10
12秒前
12秒前
12秒前
所所应助TS采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933690
求助须知:如何正确求助?哪些是违规求助? 4201746
关于积分的说明 13054958
捐赠科研通 3975817
什么是DOI,文献DOI怎么找? 2178602
邀请新用户注册赠送积分活动 1194932
关于科研通互助平台的介绍 1106316