Li Ni0.5Mn1.5O4/Ag for electrochemical lithium recovery from brine and its optimized performance via response surface methodology

电化学 卤水 电极 水溶液 选择性 材料科学 锂(药物) 化学 无机化学 催化作用 生物化学 医学 内分泌学 物理化学 有机化学
作者
Chosel P. Lawagon,Grace M. Nisola,Rosemarie Ann I. Cuevas,Rey Eliseo C. Torrejos,Hern Kim,Seong‐Poong Lee,Wook‐Jin Chung
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:212: 416-426 被引量:48
标识
DOI:10.1016/j.seppur.2018.11.046
摘要

The surging demand for lithium (Li) necessitates development of high-throughput Li+ recovery processes to maintain sustainable Li supply. Electrochemical Li+ recovery is an attractive option as it can achieve fast Li+ recovery with low energy consumption. However, it requires highly effective electrode materials with good stability in aqueous environment. In this study, delithiated Li1−xNi0.5Mn0.5O4 (NMO) was investigated as Li+ capturing electrode paired with silver (Ag) for electrochemical Li+ recovery. Material and electrochemical characterizations confirm the stability of NMO/Ag in aqueous phase and NMO selectivity towards Li+. Using brine as Li+ feed source, NMO/Ag electrochemically captured Li+ (NMO reduction) and Cl−(Ag oxidation) at an applied current (C-rate) and operation time (min step−1). The captured ions were subsequently released as LiCl in a recovery solution by reversing the current polarity. Response surface methodology using central composite design successfully optimized the process by operating it at C-rate = 1.05C for t = 20 min step−1. At these conditions, NMO/Ag required only 1.29–1.44 W h mol−1 Li+ to recover 1.259 mmol Li+ g−1 NMO at 98.14% Li+ purity. In cycled experiments (n = 50), NMO/Ag steadily accumulated Li+ in the receiving solution without experiencing electrode deterioration. Additionally, NMO/Ag effectively separated Li+ from other cations such as Na+, Mg2+, K+ and Ca2+ in brine. This establishes the potential of NMO/Ag for energy-efficient electrochemical Li+ recovery with fast production rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助落后保温杯采纳,获得10
刚刚
可爱的函函应助LJW采纳,获得10
刚刚
asd完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
zhuming完成签到,获得积分10
2秒前
懒大王发布了新的文献求助10
3秒前
小池同学发布了新的文献求助10
4秒前
科目三应助梁敏采纳,获得10
4秒前
5秒前
6秒前
小茗给小茗的求助进行了留言
7秒前
风中雨竹应助梦晨采纳,获得10
8秒前
想读博完成签到,获得积分10
8秒前
9秒前
核桃应助葡萄学姐采纳,获得30
10秒前
花花花海发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
Nemo发布了新的文献求助10
10秒前
10秒前
Owen应助YQQ采纳,获得10
10秒前
可爱的函函应助大气冬灵采纳,获得10
10秒前
托马斯小火车完成签到 ,获得积分20
11秒前
霸气老黑完成签到,获得积分20
11秒前
11秒前
Ray完成签到,获得积分10
11秒前
11秒前
槿言发布了新的文献求助10
12秒前
12秒前
顺心夜南发布了新的文献求助10
13秒前
共享精神应助科研通管家采纳,获得10
15秒前
巩志成发布了新的文献求助10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
16秒前
罗是一完成签到,获得积分10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
16秒前
华仔应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468653
求助须知:如何正确求助?哪些是违规求助? 4571995
关于积分的说明 14333271
捐赠科研通 4498777
什么是DOI,文献DOI怎么找? 2464700
邀请新用户注册赠送积分活动 1453311
关于科研通互助平台的介绍 1427921