Li Ni0.5Mn1.5O4/Ag for electrochemical lithium recovery from brine and its optimized performance via response surface methodology

电化学 卤水 电极 水溶液 选择性 材料科学 锂(药物) 化学 无机化学 催化作用 生物化学 医学 内分泌学 物理化学 有机化学
作者
Chosel P. Lawagon,Grace M. Nisola,Rosemarie Ann I. Cuevas,Rey Eliseo C. Torrejos,Hern Kim,Seong‐Poong Lee,Wook‐Jin Chung
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:212: 416-426 被引量:48
标识
DOI:10.1016/j.seppur.2018.11.046
摘要

The surging demand for lithium (Li) necessitates development of high-throughput Li+ recovery processes to maintain sustainable Li supply. Electrochemical Li+ recovery is an attractive option as it can achieve fast Li+ recovery with low energy consumption. However, it requires highly effective electrode materials with good stability in aqueous environment. In this study, delithiated Li1−xNi0.5Mn0.5O4 (NMO) was investigated as Li+ capturing electrode paired with silver (Ag) for electrochemical Li+ recovery. Material and electrochemical characterizations confirm the stability of NMO/Ag in aqueous phase and NMO selectivity towards Li+. Using brine as Li+ feed source, NMO/Ag electrochemically captured Li+ (NMO reduction) and Cl−(Ag oxidation) at an applied current (C-rate) and operation time (min step−1). The captured ions were subsequently released as LiCl in a recovery solution by reversing the current polarity. Response surface methodology using central composite design successfully optimized the process by operating it at C-rate = 1.05C for t = 20 min step−1. At these conditions, NMO/Ag required only 1.29–1.44 W h mol−1 Li+ to recover 1.259 mmol Li+ g−1 NMO at 98.14% Li+ purity. In cycled experiments (n = 50), NMO/Ag steadily accumulated Li+ in the receiving solution without experiencing electrode deterioration. Additionally, NMO/Ag effectively separated Li+ from other cations such as Na+, Mg2+, K+ and Ca2+ in brine. This establishes the potential of NMO/Ag for energy-efficient electrochemical Li+ recovery with fast production rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一棵草发布了新的文献求助10
2秒前
芝士雪豹关注了科研通微信公众号
4秒前
呼延子默发布了新的文献求助10
4秒前
蛋挞完成签到 ,获得积分10
5秒前
7秒前
7秒前
Atlantis完成签到,获得积分10
11秒前
xiaxiao完成签到,获得积分0
11秒前
Felix发布了新的文献求助10
12秒前
汉堡包应助缓慢千易采纳,获得10
12秒前
13秒前
13秒前
lll完成签到,获得积分10
13秒前
Wenpandaen应助冷静的哈密瓜采纳,获得10
14秒前
高兴的万宝路完成签到,获得积分10
16秒前
ares-gxd发布了新的文献求助10
17秒前
tivyg'lk发布了新的文献求助30
17秒前
大个应助一二采纳,获得10
18秒前
19秒前
030完成签到,获得积分20
19秒前
seedcui完成签到,获得积分10
21秒前
21秒前
Capacition6完成签到,获得积分10
21秒前
田様应助小猫在钓鱼采纳,获得10
22秒前
23秒前
24秒前
lzr完成签到,获得积分10
24秒前
蟹xie发布了新的文献求助10
25秒前
缓慢千易发布了新的文献求助10
27秒前
lzr发布了新的文献求助10
28秒前
快乐的纸飞机完成签到 ,获得积分10
30秒前
赘婿应助云_123采纳,获得10
32秒前
开心完成签到,获得积分10
33秒前
jbear发布了新的文献求助10
34秒前
37秒前
ares-gxd完成签到,获得积分10
37秒前
秋向秋完成签到,获得积分10
38秒前
芝士雪豹发布了新的文献求助10
38秒前
棵虫完成签到,获得积分10
38秒前
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134969
求助须知:如何正确求助?哪些是违规求助? 2785927
关于积分的说明 7774469
捐赠科研通 2441746
什么是DOI,文献DOI怎么找? 1298163
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825