Toward Understanding the Cold, Hot, and Neutral Nature of Chinese Medicines Using in Silico Mode-of-Action Analysis

生物信息学 行动方式 动作(物理) 化学 计算生物学 传统医学 生物 医学 生物化学 物理 基因 量子力学
作者
Xianjun Fu,Lewis Mervin,Xuebo Li,Huayun Yu,Jiaoyang Li,Siti Zuraidah Mohamad Zobir,Azedine Zoufir,Yang Zhou,Yongmei Song,Zhenguo Wang,Andreas Bender
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:57 (3): 468-483 被引量:49
标识
DOI:10.1021/acs.jcim.6b00725
摘要

One important, however, poorly understood, concept of Traditional Chinese Medicine (TCM) is that of hot, cold, and neutral nature of its bioactive principles. To advance the field, in this study, we analyzed compound-nature pairs from TCM on a large scale (>23 000 structures) via chemical space visualizations to understand its physicochemical domain and in silico target prediction to understand differences related to their modes-of-action (MoA) against proteins. We found that overall TCM natures spread into different subclusters with specific molecular patterns, as opposed to forming coherent global groups. Compounds associated with cold nature had a lower clogP and contain more aliphatic rings than the other groups and were found to control detoxification, heat-clearing, heart development processes, and have sedative function, associated with "Mental and behavioural disorders" diseases. While compounds associated with hot nature were on average of lower molecular weight, have more aromatic ring systems than other groups, frequently seemed to control body temperature, have cardio-protection function, improve fertility and sexual function, and represent excitatory or activating effects, associated with "endocrine, nutritional and metabolic diseases" and "diseases of the circulatory system". Compounds associated with neutral nature had a higher polar surface area and contain more cyclohexene moieties than other groups and seem to be related to memory function, suggesting that their nature may be a useful guide for their utility in neural degenerative diseases. We were hence able to elucidate the difference between different nature classes in TCM on the molecular level, and on a large data set, for the first time, thereby helping a better understanding of TCM nature theory and bridging the gap between traditional medicine and our current understanding of the human body.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Z30Kz8完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
端庄的小蝴蝶完成签到,获得积分10
4秒前
呱呱呱发布了新的文献求助10
6秒前
mictime完成签到,获得积分10
6秒前
天天快乐应助Nancy采纳,获得30
7秒前
dddsss发布了新的文献求助10
8秒前
8秒前
言须发布了新的文献求助10
8秒前
所所应助依琬采纳,获得10
9秒前
Yeung完成签到 ,获得积分10
10秒前
10秒前
12秒前
june发布了新的文献求助10
13秒前
13秒前
丿小智灬完成签到,获得积分10
15秒前
WOLF发布了新的文献求助10
16秒前
小强2218完成签到,获得积分10
16秒前
普普发布了新的文献求助10
17秒前
村上春树的摩的完成签到 ,获得积分10
19秒前
陈椅子的求学完成签到,获得积分10
19秒前
爆米花应助dddsss采纳,获得10
21秒前
22秒前
23秒前
SciGPT应助tantan采纳,获得10
24秒前
乐乐应助zzz采纳,获得10
24秒前
研友_8y2G0L发布了新的文献求助10
28秒前
29秒前
june完成签到,获得积分10
31秒前
31秒前
万能图书馆应助南风吹梦采纳,获得10
31秒前
34秒前
喻紫寒发布了新的文献求助10
35秒前
35秒前
aaa发布了新的文献求助10
37秒前
英俊的铭应助xj采纳,获得10
38秒前
wst1988发布了新的文献求助10
38秒前
天才小熊猫完成签到,获得积分10
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3355819
求助须知:如何正确求助?哪些是违规求助? 2979615
关于积分的说明 8690871
捐赠科研通 2661111
什么是DOI,文献DOI怎么找? 1457075
科研通“疑难数据库(出版商)”最低求助积分说明 674646
邀请新用户注册赠送积分活动 665477