细胞生物学
翻译后修饰
生物
转移酶
细胞质
胞浆
信号
酶
生物化学
计算生物学
作者
Xiaoyong Yang,Kevin Qian
摘要
Many cellular proteins are reversibly modified byO-linked N-acetylglucosamine (O-GlcNAc) moieties on Ser and Thr residues. Studies on the mechanisms and functions of O-GlcNAcylation and its links to metabolism reveal the importance of this modification in the maintenance of cellular and organismal homeostasis. O-GlcNAcylation — the attachment of O-linked N-acetylglucosamine (O-GlcNAc) moieties to cytoplasmic, nuclear and mitochondrial proteins — is a post-translational modification that regulates fundamental cellular processes in metazoans. A single pair of enzymes — O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) — controls the dynamic cycling of this protein modification in a nutrient- and stress-responsive manner. Recent years have seen remarkable advances in our understanding of O-GlcNAcylation at levels that range from structural and molecular biology to cell signalling and gene regulation to physiology and disease. New mechanisms and functions of O-GlcNAcylation that are emerging from these recent developments enable us to begin constructing a unified conceptual framework through which the significance of this modification in cellular and organismal physiology can be understood.
科研通智能强力驱动
Strongly Powered by AbleSci AI