计算机科学
协同过滤
公制(单位)
加速
推荐系统
度量空间
相似性(几何)
k-最近邻算法
最近邻搜索
机器学习
航程(航空)
人工智能
数据挖掘
数学
数学分析
运营管理
材料科学
复合材料
经济
图像(数学)
操作系统
作者
Cheng-Kang Hsieh,Longqi Yang,Yin Cui,Tsung-Yi Lin,Serge Belongie,Deborah Estrin
标识
DOI:10.1145/3038912.3052639
摘要
Metric learning algorithms produce distance metrics that capture the important relationships among data. In this work, we study the connection between metric learning and collaborative filtering. We propose Collaborative Metric Learning (CML) which learns a joint metric space to encode not only users' preferences but also the user-user and item-item similarity. The proposed algorithm outperforms state-of-the-art collaborative filtering algorithms on a wide range of recommendation tasks and uncovers the underlying spectrum of users' fine-grained preferences. CML also achieves significant speedup for Top-K recommendation tasks using off-the-shelf, approximate nearest-neighbor search, with negligible accuracy reduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI