Identification of Various Image Operations Using Residual-Based Features

计算机科学 人工智能 像素 模式识别(心理学) 二值图像 特征检测(计算机视觉) 图像处理 JPEG格式 图像(数学) 特征提取 上下文图像分类 残余物 计算机视觉 数据挖掘 算法
作者
Haodong Li,Weiqi Luo,Xiaoqing Qiu,Jiwu Huang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 31-45 被引量:138
标识
DOI:10.1109/tcsvt.2016.2599849
摘要

Image forensics has attracted wide attention during the past decade. However, most existing works aim at detecting a certain operation, which means that their proposed features usually depend on the investigated image operation and they consider only binary classification. This usually leads to misleading results if irrelevant features and/or classifiers are used. For instance, a JPEG decompressed image would be classified as an original or median filtered image if it was fed into a median filtering detector. Hence, it is important to develop forensic methods and universal features that can simultaneously identify multiple image operations. Based on extensive experiments and analysis, we find that any image operation, including existing anti-forensics operations, will inevitably modify a large number of pixel values in the original images. Thus, some common inherent statistics such as the correlations among adjacent pixels cannot be preserved well. To detect such modifications, we try to analyze the properties of local pixels within the image in the residual domain rather than the spatial domain considering the complexity of the image contents. Inspired by image steganalytic methods, we propose a very compact universal feature set and then design a multiclass classification scheme for identifying many common image operations. In our experiments, we tested the proposed features as well as several existing features on 11 typical image processing operations and four kinds of anti-forensic methods. The experimental results show that the proposed strategy significantly outperforms the existing forensic methods in terms of both effectiveness and universality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT发布了新的文献求助10
刚刚
小蘑菇应助科研通管家采纳,获得30
1秒前
terence应助科研通管家采纳,获得30
1秒前
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Akim应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
2秒前
害怕的小玉完成签到,获得积分10
2秒前
3秒前
6秒前
梦里花落知多少完成签到,获得积分10
6秒前
7秒前
阳阳发布了新的文献求助10
7秒前
Poyd发布了新的文献求助10
9秒前
开开完成签到,获得积分10
9秒前
tao_blue发布了新的文献求助10
10秒前
10秒前
888完成签到,获得积分10
10秒前
饭神仙鱼完成签到,获得积分10
11秒前
KBYer发布了新的文献求助20
11秒前
Jzhang应助tmpstlml采纳,获得10
12秒前
YoYo发布了新的文献求助10
12秒前
豌豆发布了新的文献求助10
14秒前
15秒前
言叶完成签到,获得积分10
15秒前
16秒前
CipherSage应助清新的冷松采纳,获得10
16秒前
JamesPei应助Poyd采纳,获得10
17秒前
科目三应助药学牛马采纳,获得10
18秒前
lixm发布了新的文献求助10
19秒前
NAA完成签到,获得积分10
20秒前
20秒前
tao_blue完成签到,获得积分10
20秒前
荔枝完成签到,获得积分20
20秒前
20秒前
21秒前
许多知识完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849