Multi-Domain Encoding of Spatiotemporal Dynamics in EEG for Emotion Recognition

计算机科学 编码(内存) 脑电图 动力学(音乐) 领域(数学分析) 人工智能 模式识别(心理学) 语音识别 心理学 数学 神经科学 教育学 数学分析
作者
Cheng Cheng,Yong Zhang,Luyao Liu,Wenzhe Liu,Lin Feng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 1342-1353 被引量:8
标识
DOI:10.1109/jbhi.2022.3232497
摘要

The common goal of the studies is to map any emotional states encoded from electroencephalogram (EEG) into 2-dimensional arousal-valance scores. It is still challenging due to each emotion having its specific spatial structure and dynamic dependence over the distinct time segments among EEG signals. This paper aims to model human dynamic emotional behavior by considering the location connectivity and context dependency of brain electrodes. Thus, we designed a hybrid EEG modeling method that mainly adopts the attention mechanism, combining a multi-domain spatial transformer (MST) module and a dynamic temporal transformer (DTT) module, named MSDTTs. Specifically, the MST module extracts single-domain and cross-domain features from different brain regions and fuses them into multi-domain spatial features. Meanwhile, the temporal dynamic excitation (TDE) is inserted into the multi-head convolutional transformer to form the DTT module. These two blocks work together to activate and extract the emotion-related dynamic temporal features within the DTT module. Furthermore, we place the convolutional mapping into the transformer structure to mine the static context features among the keyframes. Overall results show that high classification accuracy of 98.91%/0.14% was obtained by the $\beta$ frequency band of the DEAP dataset, and 97.52%/0.12% and 96.70%/0.26% were obtained by the $\gamma$ frequency band of SEED and SEED-IV datasets. Empirical experiments indicate that our proposed method can achieve remarkable results in comparison with state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助10
1秒前
2jz发布了新的文献求助10
1秒前
fenmiao发布了新的文献求助10
1秒前
灵巧妙柏发布了新的文献求助10
2秒前
orixero应助亦绿采纳,获得10
2秒前
3秒前
4114完成签到,获得积分10
4秒前
zhinian完成签到 ,获得积分10
5秒前
雨纷纷发布了新的文献求助10
5秒前
xdedd完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
WangRui完成签到,获得积分10
6秒前
眼睛大的薯片完成签到 ,获得积分10
6秒前
lycComeOn发布了新的文献求助10
7秒前
英俊的铭应助喵呜采纳,获得10
8秒前
星辰完成签到,获得积分10
9秒前
桐桐应助npicco采纳,获得10
9秒前
9秒前
ZZ发布了新的文献求助10
10秒前
朴实初夏完成签到 ,获得积分10
12秒前
思源应助姚华采纳,获得10
12秒前
朱朱完成签到 ,获得积分10
12秒前
李沐唅发布了新的文献求助10
13秒前
13秒前
CipherSage应助雨纷纷采纳,获得10
13秒前
李爱国应助xy采纳,获得10
14秒前
Wanniey完成签到,获得积分20
15秒前
wanci应助灵巧妙柏采纳,获得10
18秒前
hhhh完成签到,获得积分10
19秒前
19秒前
NexusExplorer应助爱笑小笼包采纳,获得10
20秒前
21秒前
常温完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
咎淇完成签到,获得积分10
23秒前
23秒前
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980224
求助须知:如何正确求助?哪些是违规求助? 3524191
关于积分的说明 11220260
捐赠科研通 3261653
什么是DOI,文献DOI怎么找? 1800792
邀请新用户注册赠送积分活动 879296
科研通“疑难数据库(出版商)”最低求助积分说明 807232