Investigating the electrochemical advanced oxidation mechanism of N-doped graphene aerogel: Molecular dynamics simulation combined with DFT method

石墨烯 气凝胶 吸附 催化作用 电催化剂 分子动力学 电化学 密度泛函理论 化学工程 化学 材料科学 纳米技术 电极 化学物理 计算化学 物理化学 有机化学 工程类
作者
Zhuang Chen,Yimei Zhang,Wenwen Gu,Mingwang Yang,Kaiwen Yao,Ting Cao,Shuai Li
出处
期刊:Environmental Research [Elsevier]
卷期号:220: 115198-115198 被引量:8
标识
DOI:10.1016/j.envres.2022.115198
摘要

Nitrogen-doped graphene as a perfectly-efficient and environmentally compatible electrocatalyst won widespread attention in electrochemical advanced oxidation processes (EAOP). However, the relationship between surface structure regulation and activity of catalysts is still lacking in systematic scientific guidance. Herein, nitrogen-doped graphene aerogel (NGA) was conveniently prepared through hydrothermal treatment, and then utilized to fabricate the gas diffusion electrode (GDE) as the cathode for tetracycline (TC) removal. High free radical yield (81.2 μM) and fast reaction rate (0.1469 min-1) were found in NGA system. The molecular dynamics simulation (MD) results showed that the interaction energy of NGA was greater than the raw graphene aerogel (GA). The adsorption activation of H2O2 and the degradation of TC occurred in the first adsorption layer of catalysts, and both processes turned more orderly after nitrogen doping. Moreover, the van der Waals interaction was stronger than the electrostatic interaction. Density function theory (DFT) revealed that the adsorption energy of H2O2 at graphitic N, pyridinic N, and pyrrolic N sites was -0.03 eV, -0.39 eV, and -0.30 eV, respectively. Pyridinic N sites were inferred as the main functional regions of in-situ activation •OH, there were more likely to occur ectopic reaction in pyrrolic N, and graphitic N were responsible for improving H2O2 production. By revealing the microstructure and activation characteristics of NGA, an experiment-simulation complementary strategy is provided in the EAOP to discover or to optimize new catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余书文发布了新的文献求助10
1秒前
llll发布了新的文献求助10
1秒前
1秒前
人小鸭儿大完成签到 ,获得积分10
1秒前
2秒前
咕咕发布了新的文献求助10
2秒前
兔农糖发布了新的文献求助10
2秒前
buran完成签到,获得积分10
2秒前
顺利的富发布了新的文献求助10
2秒前
优雅的WAN完成签到,获得积分10
3秒前
3秒前
白开水完成签到,获得积分10
4秒前
4秒前
怕黑荠应助surain采纳,获得10
4秒前
yusheng发布了新的文献求助10
5秒前
麻麻薯完成签到 ,获得积分10
5秒前
爱笑秀发发布了新的文献求助10
5秒前
5秒前
LYM发布了新的文献求助10
6秒前
7秒前
HeyJocelyn发布了新的文献求助30
7秒前
XXF完成签到,获得积分10
7秒前
8秒前
自然盼柳完成签到,获得积分10
9秒前
容若完成签到,获得积分10
9秒前
圈圈圈关注了科研通微信公众号
10秒前
jinshijie完成签到 ,获得积分10
10秒前
drsxtang完成签到,获得积分10
10秒前
香蕉觅云应助123456采纳,获得10
11秒前
算命的完成签到,获得积分10
11秒前
天天快乐应助哈哈哈采纳,获得10
11秒前
山山而川发布了新的文献求助10
11秒前
11秒前
小二郎应助咕咕采纳,获得10
12秒前
psycan发布了新的文献求助10
12秒前
Bluebulu完成签到,获得积分10
12秒前
李爱国应助vv采纳,获得10
12秒前
林森发布了新的文献求助10
12秒前
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563859
求助须知:如何正确求助?哪些是违规求助? 3137060
关于积分的说明 9420785
捐赠科研通 2837499
什么是DOI,文献DOI怎么找? 1559874
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717187