Bioprocesses are scaled up for the production of large product quantities. With larger fermenter volumes, mixing becomes increasingly inefficient and environmental gradients get more prominent than in smaller scales. Environmental gradients have an impact on the microorganism's metabolism, which makes the prediction of large-scale performance difficult and can lead to scale-up failure. A promising approach for improved understanding and estimation of dynamics of microbial populations in large-scale bioprocesses is the analysis of microbial lifelines. The lifeline of a microbe in a bioprocess is the experience of environmental gradients from a cell's perspective, which can be described as a time series of position, environment and intracellular condition. Currently, lifelines are predominantly determined using models with computational fluid dynamics, but new technical developments in flow-following sensor particles and microfluidic single-cell cultivation open the door to a more interdisciplinary concept. We critically review the current concepts and challenges in lifeline determination and application of lifeline analysis, as well as strategies for the integration of these techniques into bioprocess development. Lifelines can contribute to a successful scale-up by guiding scale-down experiments and identifying strain engineering targets or bioreactor optimisations.