A comparative study of loss functions for road segmentation in remotely sensed road datasets

分割 计算机科学 功能(生物学) 领域(数学) 人工智能 遥感 图像分割 深度学习 卫星图像 地理 计算机视觉 数据挖掘 数学 进化生物学 生物 纯数学
作者
Huang Xu,Hongjie He,Ying Zhang,Lingfei Ma,Jonathan Li
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:116: 103159-103159 被引量:1
标识
DOI:10.1016/j.jag.2022.103159
摘要

Road extraction from remote sensing imagery is a fundamental task in the field of image semantic segmentation. For this goal, numerous supervised deep learning techniques have been created, along with the employment of various loss functions that play a crucial role in determining the performances of supervised learning models. However, there is a lack of comprehensive analysis of the performance differences between the loss functions for road segmentation in remote sensing imagery. Therefore, this study conducts a comparative study of 12 well-known loss functions used widely in the field of image segmentation by training and evaluating the representative D-LinkNet network for road segmentation tasks with two publicly available remote sensing road datasets consisting of very high-resolution aerial and satellite images. The results show that different loss functions could lead to very different outcomes using the D-LinkNet, with varying focuses such as on overall model performances, precision, or recall. By dividing the loss functions into the distribution-based, region-based, and compound ones, we found that the region-based loss function type led to generally better model performances than the distribution-based one in terms of F1, IoU, and the road segmentation maps, with the compound loss function type being comparable to the region-based one. This paper eventually tries to offer suggestions for choosing the loss function that best suits the purposes of road segmentation-related studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
白开水完成签到,获得积分10
刚刚
浴火重生完成签到,获得积分10
1秒前
123456完成签到,获得积分10
1秒前
田様应助LIUYONG采纳,获得10
2秒前
王道远发布了新的文献求助10
3秒前
4秒前
zycdx3906完成签到,获得积分10
7秒前
闹心应助小小绿采纳,获得50
8秒前
尧九完成签到,获得积分10
8秒前
123完成签到 ,获得积分10
8秒前
9秒前
zhouleiwang完成签到,获得积分10
10秒前
摘星012发布了新的文献求助20
10秒前
嘿嘿完成签到,获得积分10
13秒前
yr完成签到 ,获得积分10
14秒前
14秒前
王道远完成签到,获得积分10
14秒前
Jasper应助zhouleiwang采纳,获得10
14秒前
123完成签到,获得积分10
15秒前
虎妞完成签到 ,获得积分10
15秒前
积极晓绿完成签到,获得积分10
15秒前
EaRnn发布了新的文献求助10
16秒前
现代的卿完成签到 ,获得积分10
16秒前
拉长的服饰完成签到,获得积分10
17秒前
香菜大王完成签到 ,获得积分10
17秒前
17秒前
愉快静曼发布了新的文献求助10
17秒前
奋斗人雄完成签到,获得积分10
19秒前
小v完成签到 ,获得积分10
19秒前
Gigi完成签到,获得积分10
20秒前
ssssssssci完成签到,获得积分10
20秒前
Owen应助大气灵枫采纳,获得10
21秒前
独特乘风完成签到,获得积分10
24秒前
含糊的代丝完成签到 ,获得积分10
27秒前
朴素的紫安完成签到 ,获得积分10
28秒前
yyj完成签到,获得积分10
29秒前
30秒前
30秒前
量子星尘发布了新的文献求助10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029