A comparative study of loss functions for road segmentation in remotely sensed road datasets

分割 计算机科学 功能(生物学) 领域(数学) 人工智能 遥感 图像分割 深度学习 卫星图像 地理 计算机视觉 数据挖掘 数学 进化生物学 生物 纯数学
作者
Huang Xu,Hongjie He,Ying Zhang,Lingfei Ma,Jonathan Li
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:116: 103159-103159 被引量:1
标识
DOI:10.1016/j.jag.2022.103159
摘要

Road extraction from remote sensing imagery is a fundamental task in the field of image semantic segmentation. For this goal, numerous supervised deep learning techniques have been created, along with the employment of various loss functions that play a crucial role in determining the performances of supervised learning models. However, there is a lack of comprehensive analysis of the performance differences between the loss functions for road segmentation in remote sensing imagery. Therefore, this study conducts a comparative study of 12 well-known loss functions used widely in the field of image segmentation by training and evaluating the representative D-LinkNet network for road segmentation tasks with two publicly available remote sensing road datasets consisting of very high-resolution aerial and satellite images. The results show that different loss functions could lead to very different outcomes using the D-LinkNet, with varying focuses such as on overall model performances, precision, or recall. By dividing the loss functions into the distribution-based, region-based, and compound ones, we found that the region-based loss function type led to generally better model performances than the distribution-based one in terms of F1, IoU, and the road segmentation maps, with the compound loss function type being comparable to the region-based one. This paper eventually tries to offer suggestions for choosing the loss function that best suits the purposes of road segmentation-related studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
haby发布了新的文献求助10
4秒前
4秒前
Dotuu发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
刘荣鑫完成签到,获得积分10
5秒前
6秒前
6秒前
kafm发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
无问完成签到,获得积分10
9秒前
赘婿应助小四喜采纳,获得10
10秒前
小柠完成签到,获得积分10
11秒前
long4jun3发布了新的文献求助10
11秒前
勤恳的嚓茶完成签到,获得积分10
11秒前
12秒前
manny发布了新的文献求助10
12秒前
12秒前
自觉的草莓完成签到 ,获得积分10
13秒前
酷酷水杯发布了新的文献求助10
14秒前
15秒前
饭呆夫发布了新的文献求助10
15秒前
15秒前
flying蝈蝈发布了新的文献求助10
16秒前
缓慢的善愁完成签到 ,获得积分20
16秒前
zxyan发布了新的文献求助10
18秒前
慕青应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
19秒前
SONGYEZI应助科研通管家采纳,获得20
19秒前
Akim应助科研通管家采纳,获得10
19秒前
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
无花果应助科研通管家采纳,获得10
19秒前
wanci应助Suu采纳,获得10
20秒前
嘉深发布了新的文献求助100
20秒前
忧心的清炎完成签到,获得积分10
21秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5383371
求助须知:如何正确求助?哪些是违规求助? 4506321
关于积分的说明 14024212
捐赠科研通 4416030
什么是DOI,文献DOI怎么找? 2425898
邀请新用户注册赠送积分活动 1418538
关于科研通互助平台的介绍 1396822