A comparative study of loss functions for road segmentation in remotely sensed road datasets

分割 计算机科学 功能(生物学) 领域(数学) 人工智能 遥感 图像分割 深度学习 卫星图像 地理 计算机视觉 数据挖掘 数学 进化生物学 生物 纯数学
作者
Huang Xu,Hongjie He,Ying Zhang,Lingfei Ma,Jonathan Li
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:116: 103159-103159 被引量:1
标识
DOI:10.1016/j.jag.2022.103159
摘要

Road extraction from remote sensing imagery is a fundamental task in the field of image semantic segmentation. For this goal, numerous supervised deep learning techniques have been created, along with the employment of various loss functions that play a crucial role in determining the performances of supervised learning models. However, there is a lack of comprehensive analysis of the performance differences between the loss functions for road segmentation in remote sensing imagery. Therefore, this study conducts a comparative study of 12 well-known loss functions used widely in the field of image segmentation by training and evaluating the representative D-LinkNet network for road segmentation tasks with two publicly available remote sensing road datasets consisting of very high-resolution aerial and satellite images. The results show that different loss functions could lead to very different outcomes using the D-LinkNet, with varying focuses such as on overall model performances, precision, or recall. By dividing the loss functions into the distribution-based, region-based, and compound ones, we found that the region-based loss function type led to generally better model performances than the distribution-based one in terms of F1, IoU, and the road segmentation maps, with the compound loss function type being comparable to the region-based one. This paper eventually tries to offer suggestions for choosing the loss function that best suits the purposes of road segmentation-related studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sasa完成签到,获得积分10
刚刚
JamesPei应助yzxzdm采纳,获得10
刚刚
NexusExplorer应助水濑心源采纳,获得10
1秒前
guobao完成签到,获得积分10
1秒前
hanzhangjian发布了新的文献求助10
1秒前
健忘完成签到,获得积分10
1秒前
1秒前
2秒前
酷波er应助鱼仔采纳,获得10
3秒前
surilige完成签到 ,获得积分10
3秒前
3秒前
fhbsdufh发布了新的文献求助10
4秒前
daidaimumu发布了新的文献求助10
4秒前
zys2001mezy完成签到,获得积分10
4秒前
感性的大楚完成签到,获得积分10
5秒前
科研扫地僧完成签到,获得积分10
5秒前
5秒前
爆米花应助W~舞采纳,获得10
5秒前
shh发布了新的文献求助10
5秒前
Luo应助啦啦啦啦啦采纳,获得10
5秒前
6秒前
丘比特应助hanzhangjian采纳,获得10
6秒前
西西发布了新的文献求助30
6秒前
比奇堡平平无奇烂虾完成签到,获得积分10
6秒前
一小部分我完成签到 ,获得积分10
6秒前
斯可完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
rakuyo完成签到 ,获得积分10
8秒前
ray发布了新的文献求助10
8秒前
sdl发布了新的文献求助10
8秒前
9秒前
清久发布了新的文献求助10
10秒前
10秒前
lq完成签到,获得积分10
10秒前
安静的虔完成签到,获得积分10
10秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969322
求助须知:如何正确求助?哪些是违规求助? 3514152
关于积分的说明 11172188
捐赠科研通 3249407
什么是DOI,文献DOI怎么找? 1794832
邀请新用户注册赠送积分活动 875437
科研通“疑难数据库(出版商)”最低求助积分说明 804781