A comparative study of loss functions for road segmentation in remotely sensed road datasets

分割 计算机科学 功能(生物学) 领域(数学) 人工智能 遥感 图像分割 深度学习 卫星图像 地理 计算机视觉 数据挖掘 数学 进化生物学 生物 纯数学
作者
Huang Xu,Hongjie He,Ying Zhang,Lingfei Ma,Jonathan Li
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:116: 103159-103159 被引量:1
标识
DOI:10.1016/j.jag.2022.103159
摘要

Road extraction from remote sensing imagery is a fundamental task in the field of image semantic segmentation. For this goal, numerous supervised deep learning techniques have been created, along with the employment of various loss functions that play a crucial role in determining the performances of supervised learning models. However, there is a lack of comprehensive analysis of the performance differences between the loss functions for road segmentation in remote sensing imagery. Therefore, this study conducts a comparative study of 12 well-known loss functions used widely in the field of image segmentation by training and evaluating the representative D-LinkNet network for road segmentation tasks with two publicly available remote sensing road datasets consisting of very high-resolution aerial and satellite images. The results show that different loss functions could lead to very different outcomes using the D-LinkNet, with varying focuses such as on overall model performances, precision, or recall. By dividing the loss functions into the distribution-based, region-based, and compound ones, we found that the region-based loss function type led to generally better model performances than the distribution-based one in terms of F1, IoU, and the road segmentation maps, with the compound loss function type being comparable to the region-based one. This paper eventually tries to offer suggestions for choosing the loss function that best suits the purposes of road segmentation-related studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CR完成签到,获得积分10
刚刚
邱名仕完成签到 ,获得积分10
刚刚
1秒前
花开富贵发布了新的文献求助10
2秒前
Lee关闭了Lee文献求助
3秒前
无极微光应助www采纳,获得20
3秒前
alexlpb完成签到,获得积分0
3秒前
江小白发布了新的文献求助10
4秒前
5秒前
英子发布了新的文献求助10
5秒前
鲁迪完成签到,获得积分10
5秒前
大模型应助cj采纳,获得10
7秒前
科研通AI2S应助xcc采纳,获得10
7秒前
8秒前
蓬蓬完成签到,获得积分10
9秒前
曲沉鱼发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
11秒前
corazon发布了新的文献求助30
11秒前
无极微光应助yana采纳,获得20
12秒前
Owen应助江风采纳,获得10
12秒前
14秒前
yy完成签到,获得积分10
16秒前
彭于晏应助Serena采纳,获得30
17秒前
学习发布了新的文献求助30
19秒前
yy发布了新的文献求助10
19秒前
鲁迪发布了新的文献求助30
20秒前
20秒前
cwj发布了新的文献求助30
20秒前
丹牛完成签到,获得积分10
21秒前
顺心的惜蕊完成签到 ,获得积分10
21秒前
21秒前
21秒前
金智媛发布了新的文献求助10
22秒前
大模型应助斯文明杰采纳,获得10
22秒前
眼睛大忆梅完成签到,获得积分10
23秒前
转转发布了新的文献求助10
23秒前
corazon发布了新的文献求助10
24秒前
momo发布了新的文献求助10
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680081
求助须知:如何正确求助?哪些是违规求助? 4995956
关于积分的说明 15171678
捐赠科研通 4839887
什么是DOI,文献DOI怎么找? 2593687
邀请新用户注册赠送积分活动 1546696
关于科研通互助平台的介绍 1504768