已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A comparative study of loss functions for road segmentation in remotely sensed road datasets

分割 计算机科学 功能(生物学) 领域(数学) 人工智能 遥感 图像分割 深度学习 卫星图像 地理 计算机视觉 数据挖掘 数学 进化生物学 生物 纯数学
作者
Huang Xu,Hongjie He,Ying Zhang,Lingfei Ma,Jonathan Li
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:116: 103159-103159 被引量:1
标识
DOI:10.1016/j.jag.2022.103159
摘要

Road extraction from remote sensing imagery is a fundamental task in the field of image semantic segmentation. For this goal, numerous supervised deep learning techniques have been created, along with the employment of various loss functions that play a crucial role in determining the performances of supervised learning models. However, there is a lack of comprehensive analysis of the performance differences between the loss functions for road segmentation in remote sensing imagery. Therefore, this study conducts a comparative study of 12 well-known loss functions used widely in the field of image segmentation by training and evaluating the representative D-LinkNet network for road segmentation tasks with two publicly available remote sensing road datasets consisting of very high-resolution aerial and satellite images. The results show that different loss functions could lead to very different outcomes using the D-LinkNet, with varying focuses such as on overall model performances, precision, or recall. By dividing the loss functions into the distribution-based, region-based, and compound ones, we found that the region-based loss function type led to generally better model performances than the distribution-based one in terms of F1, IoU, and the road segmentation maps, with the compound loss function type being comparable to the region-based one. This paper eventually tries to offer suggestions for choosing the loss function that best suits the purposes of road segmentation-related studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DDD应助刻苦的诗蕾采纳,获得10
刚刚
神途完成签到,获得积分10
1秒前
Setsail24k完成签到,获得积分10
3秒前
6秒前
10秒前
隐形曼青应助zhangxuhns采纳,获得10
11秒前
www发布了新的文献求助10
11秒前
图图完成签到,获得积分10
11秒前
简单嚓茶应助迷路的雅霜采纳,获得10
11秒前
13秒前
14秒前
14秒前
无语死了发布了新的文献求助10
14秒前
chem发布了新的文献求助10
15秒前
之_ZH发布了新的文献求助10
16秒前
dxtmm完成签到,获得积分10
19秒前
19秒前
清脆无颜发布了新的文献求助10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
机灵柚子应助科研通管家采纳,获得20
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
wanci应助科研通管家采纳,获得10
21秒前
qianzheng应助科研通管家采纳,获得10
21秒前
杳鸢应助科研通管家采纳,获得10
22秒前
李爱国应助科研通管家采纳,获得10
22秒前
不配.应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
许诺发布了新的文献求助30
22秒前
田様应助清脆无颜采纳,获得10
27秒前
amber发布了新的文献求助10
27秒前
文刀大可完成签到 ,获得积分10
28秒前
28秒前
迷路的雅霜给迷路的雅霜的求助进行了留言
29秒前
所所应助热情的明轩采纳,获得20
29秒前
之_ZH完成签到,获得积分10
30秒前
33秒前
我要毕业完成签到 ,获得积分10
33秒前
runrun发布了新的文献求助10
34秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219517
求助须知:如何正确求助?哪些是违规求助? 2868333
关于积分的说明 8160589
捐赠科研通 2535388
什么是DOI,文献DOI怎么找? 1367808
科研通“疑难数据库(出版商)”最低求助积分说明 645094
邀请新用户注册赠送积分活动 618441