A comparative study of loss functions for road segmentation in remotely sensed road datasets

分割 计算机科学 功能(生物学) 领域(数学) 人工智能 遥感 图像分割 深度学习 卫星图像 地理 计算机视觉 数据挖掘 数学 进化生物学 生物 纯数学
作者
Huang Xu,Hongjie He,Ying Zhang,Lingfei Ma,Jonathan Li
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:116: 103159-103159 被引量:1
标识
DOI:10.1016/j.jag.2022.103159
摘要

Road extraction from remote sensing imagery is a fundamental task in the field of image semantic segmentation. For this goal, numerous supervised deep learning techniques have been created, along with the employment of various loss functions that play a crucial role in determining the performances of supervised learning models. However, there is a lack of comprehensive analysis of the performance differences between the loss functions for road segmentation in remote sensing imagery. Therefore, this study conducts a comparative study of 12 well-known loss functions used widely in the field of image segmentation by training and evaluating the representative D-LinkNet network for road segmentation tasks with two publicly available remote sensing road datasets consisting of very high-resolution aerial and satellite images. The results show that different loss functions could lead to very different outcomes using the D-LinkNet, with varying focuses such as on overall model performances, precision, or recall. By dividing the loss functions into the distribution-based, region-based, and compound ones, we found that the region-based loss function type led to generally better model performances than the distribution-based one in terms of F1, IoU, and the road segmentation maps, with the compound loss function type being comparable to the region-based one. This paper eventually tries to offer suggestions for choosing the loss function that best suits the purposes of road segmentation-related studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MMMV完成签到,获得积分10
1秒前
4秒前
小蘑菇应助高挑的迎夏采纳,获得10
4秒前
tannie完成签到 ,获得积分0
5秒前
隐形珊完成签到,获得积分10
7秒前
希望天下0贩的0应助niniyiya采纳,获得10
7秒前
8秒前
8秒前
9秒前
Orange应助圈圈采纳,获得10
11秒前
aa完成签到,获得积分10
12秒前
愉快若剑发布了新的文献求助10
13秒前
Godlove发布了新的文献求助10
13秒前
kkk发布了新的文献求助10
14秒前
16秒前
酷波er应助方法采纳,获得10
17秒前
18秒前
Godlove完成签到,获得积分10
19秒前
19秒前
打打应助kkk采纳,获得10
20秒前
Jared应助小鱼头采纳,获得10
21秒前
22秒前
飞快的孱完成签到,获得积分10
24秒前
李爱国应助慕木采纳,获得10
24秒前
fengfeng发布了新的文献求助10
25秒前
psg完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
浮游应助求神拜佛采纳,获得10
27秒前
浮游应助求神拜佛采纳,获得10
27秒前
27秒前
sdfgv发布了新的文献求助10
29秒前
加菲丰丰举报外向的灵槐求助涉嫌违规
29秒前
完美世界应助百宝采纳,获得10
30秒前
高挑的迎夏完成签到,获得积分10
33秒前
Chris发布了新的文献求助10
34秒前
yiteng完成签到,获得积分10
34秒前
35秒前
Owen应助落寞的新晴采纳,获得10
37秒前
上官若男应助Chris采纳,获得10
38秒前
量子星尘发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633720
求助须知:如何正确求助?哪些是违规求助? 4729357
关于积分的说明 14986552
捐赠科研通 4791560
什么是DOI,文献DOI怎么找? 2558957
邀请新用户注册赠送积分活动 1519405
关于科研通互助平台的介绍 1479650