Optimal dispatch approach for second-life batteries considering degradation with online SoH estimation

健康状况 电池(电) 降级(电信) 卡尔曼滤波器 过程(计算) 计算机科学 可靠性工程 工程类 功率(物理) 汽车工程 电信 人工智能 物理 量子力学 操作系统
作者
Ming Cheng,Xuan Zhang,Aihua Ran,Guodan Wei,Hongbin Sun
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:173: 113053-113053 被引量:32
标识
DOI:10.1016/j.rser.2022.113053
摘要

In light of upcoming electric vehicle (EV) battery retirement issues, second-life batteries (SLBs) have received increasing attention for their ability to extend the life-span of existing batteries and postpone the manufacturing of new batteries. When compared with new batteries, the process by which SLBs degrade demands more attention as they are more vulnerable to external stress and more likely to suffer from physical collapses. Their dispatch approaches, especially in terms of degradation, are essential tools for investors and end-users to investigate their technical and economic viability. In this paper, an optimal dispatch approach considering degradation with online state of health (SoH) estimation is developed, which integrates SoH into the optimization as a time-varying parameter affecting the battery performance. This online SoH estimation model leverages the Kalman filter’s estimation power to achieve higher accuracy by combining short-term estimation and long-term prediction results. Moreover, the heterogeneous characteristics among these retired batteries due to their diverse first-life usage patterns and working conditions are considered by assigning different initial values of SoH and degradation paths. Subsequently, the performance of the proposed approach, an alternative dispatch approach considering degradation with a state of charge (SoC) based model, and a dispatch approach with no degradation consideration were compared in the case study. The results show that the proposed approach can lead to less battery degradation and can save costs with the batteries operating in a complementary way (not charging/discharging uniformly) to improve energy balancing and energy arbitrage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助蹦蹦采纳,获得10
刚刚
领导范儿应助完美的煎蛋采纳,获得10
1秒前
3秒前
Ava应助wl1700采纳,获得10
4秒前
TIGun发布了新的文献求助10
6秒前
我是老大应助明理萤采纳,获得30
8秒前
月牙泉发布了新的文献求助10
8秒前
汉堡包应助HandsomeBoy采纳,获得10
8秒前
cc小木屋完成签到,获得积分10
10秒前
10秒前
zz完成签到,获得积分20
11秒前
11秒前
吕佩昌发布了新的文献求助10
11秒前
丰知然应助科研通管家采纳,获得10
11秒前
丰知然应助科研通管家采纳,获得10
11秒前
duanhuiyuan应助科研通管家采纳,获得10
11秒前
丰知然应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得30
12秒前
丰知然应助科研通管家采纳,获得10
12秒前
duanhuiyuan应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
12秒前
丰知然应助科研通管家采纳,获得10
12秒前
丰知然应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
丰知然应助科研通管家采纳,获得10
12秒前
翁雁丝发布了新的文献求助10
13秒前
小二郎应助wl1700采纳,获得10
14秒前
余木完成签到,获得积分20
15秒前
亚米完成签到,获得积分10
16秒前
cc小木屋发布了新的文献求助10
16秒前
naturehome发布了新的文献求助10
17秒前
今后应助月儿采纳,获得10
17秒前
研友_VZG7GZ应助niuma采纳,获得10
17秒前
21秒前
T1unkillable完成签到 ,获得积分10
22秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433875
求助须知:如何正确求助?哪些是违规求助? 3031024
关于积分的说明 8940659
捐赠科研通 2719043
什么是DOI,文献DOI怎么找? 1491619
科研通“疑难数据库(出版商)”最低求助积分说明 689336
邀请新用户注册赠送积分活动 685486