材料科学
蒸发
卤化物
钙钛矿(结构)
盐(化学)
熔盐
化学工程
热导率
真空蒸发
能量转换效率
制作
电导率
沉积(地质)
金属
纳米技术
薄膜
无机化学
光电子学
冶金
复合材料
有机化学
古生物学
物理化学
病理
工程类
化学
物理
替代医学
热力学
生物
医学
沉积物
作者
Hang Li,Liguo Tan,Chaofan Jiang,Minghao Li,Junjie Zhou,Yiran Ye,Yue Liu,Chenyi Yi
标识
DOI:10.1002/adfm.202211232
摘要
Abstract Vacuum evaporation is promising for the scalable fabrication of perovskite solar cells (PSCs). Nevertheless, the poor thermal conductivity of metal halide powder leads to unfavorable temperature inhomogeneity, which destabilizes the evaporation rate, posing a major challenge to the reproducible deposition of perovskite films, particularly by coevaporation. Herein, a molten salt strategy is reported for sequentially vacuum evaporation of PSCs. The molten salt increases the thermal conductivity of metal halides and greatly homogenizes the temperature, which stabilizes the evaporation rate and the composition of the resulting perovskite films. The PSCs yield power conversion efficiencies (PCEs) of ≈24% with exceptional reproducibility. The unencapsulated PSCs maintain 85% of the initial PCE after 3600 h of maximum power point tracking and maintain 85% of the initial PCE after being heated at 60 °C for 3000 h. The molten salt strategy opens a new avenue for the application of evaporation in perovskite optoelectronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI