Multi-Agent Attention Double Actor-Critic Framework for Intelligent Traffic Light Control in Urban Scenarios With Hybrid Traffic

计算机科学 图形 集合(抽象数据类型) 运筹学 分布式计算 理论计算机科学 数学 程序设计语言
作者
Bingyi Liu,Weizhen Han,Enshu Wang,Shengwu Xiong,Libing Wu,Qian Wang,Jianping Wang,Chunming Qiao
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 660-672 被引量:3
标识
DOI:10.1109/tmc.2022.3233879
摘要

In real-world urban environments, hybrid and disorder traffic brings new challenges for the intelligent traffic light control system (ITLCS). Apart from coordinating traffic flows around intersections, the ITLCS is responsive to ensuring high priority vehicles pass through intersections quickly. To this end, we formulate the multiple intersections' decision-making problem as a Semi-Markov game and propose a multi-agent attention double actor-critic (MAADAC) framework to solve this game, integrating the options framework with graph attention networks (GATs) . Specifically, the options framework empowers agents to learn to make a long sequence of satisfactory decisions, such as keeping a reasonable phase for a short period to ensure high priority vehicles pass through intersections quickly. Besides, we adopt GATs to capture graph-structure mutual influences among agents. We set up a simulator based on real-world city road networks and conduct extensive experiments to evaluate the performance of MAADAC. The experimental results show that MAADAC can reduce high priority vehicles' waiting time in the interval of 18.16%-38.14% versus the density of vehicles in real-world urban scenarios over several state-of-the-art approaches. Also, our framework can guarantee the passing efficiency of high priority vehicles under various traffic conditions with the change in the proportion of high priority vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luct发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
2秒前
3秒前
阳光路灯完成签到,获得积分10
3秒前
WJ发布了新的文献求助20
4秒前
杨震应助简单的鸡翅采纳,获得10
4秒前
个性的振家完成签到,获得积分10
4秒前
4秒前
Llzaj发布了新的文献求助10
5秒前
6秒前
郑qqqq发布了新的文献求助10
6秒前
徐rl发布了新的文献求助10
6秒前
咎牛青发布了新的文献求助30
6秒前
7秒前
7秒前
8秒前
DTP发布了新的文献求助10
8秒前
李李李发布了新的文献求助10
8秒前
yanzinie发布了新的文献求助10
9秒前
上官若男应助luct采纳,获得10
9秒前
9秒前
9秒前
jisujun发布了新的文献求助10
9秒前
yyds应助yae采纳,获得50
10秒前
chongchong完成签到,获得积分10
11秒前
小星星发布了新的文献求助10
12秒前
12秒前
迟大猫应助科研通管家采纳,获得10
12秒前
无名发布了新的文献求助10
12秒前
12秒前
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
麦客完成签到,获得积分10
13秒前
13秒前
蒙扎发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543260
求助须知:如何正确求助?哪些是违规求助? 3120651
关于积分的说明 9343550
捐赠科研通 2818657
什么是DOI,文献DOI怎么找? 1549757
邀请新用户注册赠送积分活动 722221
科研通“疑难数据库(出版商)”最低求助积分说明 713078