A Robust Growing Memory Network for Lifelong Learning of Intelligent Agents

计算机科学 超参数 人工智能 规范化(社会学) 机器学习 语义记忆 情景记忆 认知 人类学 生物 社会学 神经科学
作者
Wei Hong Chin,Wenbang Dou,Naoyuki Kubota,Chu Kiong Loo
标识
DOI:10.1109/ijcnn55064.2022.9892827
摘要

The general success criterion for an artificial intelligence system is its ability to mimic human brain learning. Throughout a lifetime, the human brain is capable of continual learning. The acquired information is kept, augmented, finetuned, and utilized to complete new tasks in the future. At the moment, machine learning models perform well when given precisely structured, balanced, and homogenized data. However, when several jobs with incremental data are provided, the performance of the majority of these models suffers. Inspired by the Complementary Learning Systems (CLS) theory in neuroscience, episodic-semantic memory-based frameworks have received much attention and research. On the other hand, conventional methods are needed to perform data batch normalization and are sensitive to vigilance hyperparameters across different datasets. This paper proposes a Robust Growing Memory Network (RGMN) that continuously learns incoming data without normalization and is unlikely to be affected by the vigilance hyperparameter. The RGMN is a self-organizing topological network that models human episodic memory, and its network size can grow and shrink in response to data. The long-term memory buffer retains the largest and smallest data values that will use for learning. To evaluate the performance of the proposed method, we conducted comparative experiments on real-world datasets, and results showed that the proposed method outperforms existing memory-based baseline frameworks in terms of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夏冰完成签到,获得积分10
刚刚
1秒前
shiyu完成签到,获得积分10
1秒前
Ion发布了新的文献求助30
1秒前
icerell完成签到,获得积分10
1秒前
科目三应助xyz采纳,获得10
1秒前
乐乐应助yankeyu200005采纳,获得10
2秒前
周二完成签到 ,获得积分10
2秒前
cindy完成签到,获得积分10
2秒前
卿久久完成签到,获得积分10
3秒前
无敌娜完成签到,获得积分10
3秒前
李爱国应助abc123采纳,获得10
3秒前
vicky发布了新的文献求助10
3秒前
许自通完成签到,获得积分10
3秒前
4秒前
科研小白完成签到,获得积分10
4秒前
CDY完成签到,获得积分10
4秒前
喜悦的白开水完成签到,获得积分20
5秒前
5秒前
甜蜜英姑完成签到,获得积分10
5秒前
momo发布了新的文献求助10
5秒前
小刘完成签到,获得积分10
5秒前
小王爱读文献完成签到,获得积分10
5秒前
Bruce完成签到,获得积分10
5秒前
pengchen完成签到 ,获得积分10
6秒前
Kuhaku完成签到,获得积分10
6秒前
6秒前
shilong.yang完成签到,获得积分10
6秒前
热情孤丹发布了新的文献求助10
6秒前
酷波er应助朴实的小懒虫采纳,获得10
7秒前
敏感的惜文完成签到,获得积分10
7秒前
小迷糊完成签到,获得积分10
7秒前
Sophia完成签到,获得积分10
7秒前
酷酷平卉完成签到 ,获得积分10
7秒前
Lee完成签到,获得积分10
7秒前
迟大猫应助喜悦的白开水采纳,获得10
8秒前
ding应助muyangsiyuan采纳,获得10
9秒前
无敌娜发布了新的文献求助10
9秒前
健壮诗桃发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
Interest Rate Modeling. Volume 1: Foundations and Vanilla Models 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539582
求助须知:如何正确求助?哪些是违规求助? 3117244
关于积分的说明 9329500
捐赠科研通 2814939
什么是DOI,文献DOI怎么找? 1547364
邀请新用户注册赠送积分活动 720872
科研通“疑难数据库(出版商)”最低求助积分说明 712333