Hypoperfusion intensity ratio and CBV index as predictive parameters to identify underlying intracranial atherosclerotic stenosis in endovascular thrombectomy

医学 狭窄 心脏病学 放射科 内科学 强度(物理) 灌注 量子力学 物理
作者
Yukihiro Imaoka,Seigo Shindo,Masatomo Miura,Tadashi Terasaki,Akitake Mukasa,Tatemi Todaka
出处
期刊:Journal of Neuroradiology [Elsevier]
卷期号:50 (4): 424-430 被引量:10
标识
DOI:10.1016/j.neurad.2022.10.005
摘要

Intracranial atherosclerotic stenosis (ICAS)-related large vessel occlusion (LVO) is difficult to diagnose before endovascular thrombectomy (EVT) in an emergency. We hypothesized that hypoperfusion intensity ratio (HIR) and cerebral blood volume (CBV) index reflect collateral flow and would be useful parameters to predict underlying ICAS.Clinical and perfusion imaging parameters of patients receiving EVT for LVO were reviewed retrospectively. Patients were divided into ICAS and embolism groups with angiographical findings. The association between prespecified parameters and underlying ICAS were assessed using multivariable logistic regression analyses. Discriminative ability was assessed using receiver operating characteristic analysis.Among 238 consecutive patients, 47 satisfied the inclusion criteria, including 10 with ICAS-related LVO. In ROC analyses, HIR showed good discrimination with a cutoff value of 0.22 (area under the curve, 0.85; 95%CI, 0.75-0.96; sensitivity, 0.84; specificity, 0.80) for underlying ICAS. CBV index showed excellent discrimination with a cutoff value of 0.90 (area under the curve, 0.92; 95%CI, 0.81-0.98; sensitivity, 0.92; specificity, 0.79). Multivariable logistic regression analysis revealed that HIR ≤ 0.22 (OR, 22.5; 95%CI, 2.9-177.0; P = 0.003) and CBV index ≥ 0.9 (OR, 75.7; 95%CI, 5.8-994.0; P < 0.001) were significantly associated with underlying ICAS.HIR ≤ 0.22 and CBV index ≥ 0.9 were associated with underlying ICAS and may predict underlying ICAS before EVT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孟柠柠发布了新的文献求助10
刚刚
青阳完成签到,获得积分10
1秒前
科研狗发布了新的文献求助20
2秒前
3秒前
3秒前
jarenthar完成签到 ,获得积分10
3秒前
3秒前
丘比特应助hata采纳,获得10
3秒前
顾矜应助lszhw采纳,获得10
4秒前
lqq完成签到 ,获得积分10
4秒前
4秒前
共享精神应助拟拟采纳,获得10
4秒前
4秒前
lhy12345完成签到,获得积分10
4秒前
非常可爱发布了新的文献求助20
5秒前
5秒前
5秒前
5秒前
科研民工发布了新的文献求助10
6秒前
文艺的初蓝完成签到 ,获得积分10
6秒前
TiAmo发布了新的文献求助10
6秒前
刘十三完成签到,获得积分10
6秒前
6秒前
犹豫忆南完成签到,获得积分10
7秒前
科研通AI5应助kingwhitewing采纳,获得10
8秒前
8秒前
mm关注了科研通微信公众号
8秒前
xieyuanxing发布了新的文献求助10
8秒前
8秒前
左然然完成签到,获得积分10
8秒前
8秒前
人福药业完成签到,获得积分10
9秒前
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
细腻晓露发布了新的文献求助10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
9秒前
三里墩头应助科研通管家采纳,获得10
9秒前
天线宝宝应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740