量子点
光合作用
人工光合作用
半导体
纳米技术
化学
细菌
电子转移
化学工程
光化学
材料科学
生物化学
光电子学
生物
工程类
催化作用
光催化
遗传学
作者
Na Wen,Qianqing Jiang,Jiting Cui,Haiming Zhu,Baohong Ji,Dianyi Liu
出处
期刊:Nano Today
[Elsevier]
日期:2022-11-10
卷期号:47: 101681-101681
被引量:15
标识
DOI:10.1016/j.nantod.2022.101681
摘要
The semiconductor material with low bio-toxicity and broad light absorption region is crucial for semiconductor-bacteria photosynthetic biohybrid systems. Here we introduce the low-toxic InP/ZnSe/ZnS quantum dots (QDs) into the non-photosynthetic bacteria to produce value-added chemicals. The QDs with ideal biocompatibility act as the light-harvesting semiconductor in the photosynthetic biohybrid systems. The results indicate that the QDs can enter the interior of bacteria and effectively promote the conversion of CO2 to acetate. The electrons generated intracellular present the primary contribution in the conversion process compared with the extracellular electrons transferred through the electron mediator. The total productivity of photosynthesis products can reach ∼ 0.89 mmol·L−1·h−1 with a quantum efficiency (QE) of 6–8%. Assisted with the genetically engineered E.coli, the obtained acetate is then converted into a high-value-added product. The hybrid photosynthetic system that integrated the QDs and non-photosynthetic bacteria exhibits great potential for large-scale solar-to-chemical conversion applications and environmental protection.
科研通智能强力驱动
Strongly Powered by AbleSci AI