亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection and classification of microcalcifications in mammograms images using difference filter and Yolov4 deep learning model

计算机科学 人工智能 深度学习 模式识别(心理学) 滤波器(信号处理) 计算机视觉
作者
Ayşe Aydın Yurdusev,Kemal Adem,Mahmut Hekim
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104360-104360 被引量:19
标识
DOI:10.1016/j.bspc.2022.104360
摘要

In this study, we focus on increasing the visibility of microcalcifications (MCs) in mammogram images by means of the difference filter and classifying the visibility-increased MCs by using Yolov4 deep learning model. The same classification experiments are reperformed for also the widely used Faster R-CNN deep learning model to compare with the proposed approach. For this aim, the difference filter is applied to the sections taken from normal and abnormal labeled mammogram images, and the filtered images are used as inputs to Yolov4 and Faster R-CNN models in order to classify as normal and abnormal. In order to show the contribution of the difference filter to the classification success, the experiments are reimplemented without using the difference filter. The difference filter based on the neighborhood relations of the image pixels significantly improves the classification success ratios of the classifier models used in the study since it increases especially the visibility of the rounded edges and makes microcalcifications in the image more prominent. As a result, the experiments show that the use of deep learning models together with the difference filter contributes significantly to the classification success. Finally, this study gives rise to the idea that it can greatly contribute to studies reading of the mammograms with MCs (abnormal) highlighted by the use of difference filter.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
ucas大菠萝完成签到,获得积分10
3秒前
ysx完成签到 ,获得积分10
4秒前
6秒前
hh发布了新的文献求助10
10秒前
00发布了新的文献求助10
11秒前
jam发布了新的文献求助30
13秒前
赘婿应助结实的凉面采纳,获得10
16秒前
脑洞疼应助暴躁火龙果采纳,获得10
16秒前
jam完成签到,获得积分10
22秒前
Hello应助暴躁火龙果采纳,获得10
22秒前
25秒前
小二郎应助Joy采纳,获得30
26秒前
以七完成签到 ,获得积分10
28秒前
科研通AI6.1应助炙热成仁采纳,获得10
31秒前
33秒前
田様应助暴躁火龙果采纳,获得10
34秒前
852应助科研通管家采纳,获得10
34秒前
42秒前
46秒前
量子星尘发布了新的文献求助10
47秒前
陳.发布了新的文献求助10
48秒前
陈的住气完成签到 ,获得积分10
51秒前
52秒前
任性的皮皮虾完成签到,获得积分10
54秒前
1分钟前
1分钟前
悦耳青梦发布了新的文献求助10
1分钟前
Pengfei_Soil发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
yyds完成签到,获得积分0
1分钟前
1分钟前
嘻嘻嘻完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2jz发布了新的文献求助10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746540
求助须知:如何正确求助?哪些是违规求助? 5435517
关于积分的说明 15355531
捐赠科研通 4886528
什么是DOI,文献DOI怎么找? 2627297
邀请新用户注册赠送积分活动 1575762
关于科研通互助平台的介绍 1532510