Detection and classification of microcalcifications in mammograms images using difference filter and Yolov4 deep learning model

计算机科学 人工智能 深度学习 模式识别(心理学) 滤波器(信号处理) 计算机视觉
作者
Ayşe Aydın Yurdusev,Kemal Adem,Mahmut Hekim
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104360-104360 被引量:19
标识
DOI:10.1016/j.bspc.2022.104360
摘要

In this study, we focus on increasing the visibility of microcalcifications (MCs) in mammogram images by means of the difference filter and classifying the visibility-increased MCs by using Yolov4 deep learning model. The same classification experiments are reperformed for also the widely used Faster R-CNN deep learning model to compare with the proposed approach. For this aim, the difference filter is applied to the sections taken from normal and abnormal labeled mammogram images, and the filtered images are used as inputs to Yolov4 and Faster R-CNN models in order to classify as normal and abnormal. In order to show the contribution of the difference filter to the classification success, the experiments are reimplemented without using the difference filter. The difference filter based on the neighborhood relations of the image pixels significantly improves the classification success ratios of the classifier models used in the study since it increases especially the visibility of the rounded edges and makes microcalcifications in the image more prominent. As a result, the experiments show that the use of deep learning models together with the difference filter contributes significantly to the classification success. Finally, this study gives rise to the idea that it can greatly contribute to studies reading of the mammograms with MCs (abnormal) highlighted by the use of difference filter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蛋炒饭不加蛋完成签到,获得积分10
1秒前
酷炫素完成签到,获得积分10
1秒前
阿金发布了新的文献求助10
2秒前
Jasper应助帅气鹭洋采纳,获得10
2秒前
2秒前
明天更好发布了新的文献求助10
2秒前
3秒前
科研通AI5应助小柠檬采纳,获得10
3秒前
YY完成签到,获得积分10
3秒前
4秒前
科研通AI5应助stt采纳,获得10
4秒前
LDM发布了新的文献求助10
4秒前
上官若男应助乐正成危采纳,获得10
5秒前
小二郎应助有魅力傲菡采纳,获得10
5秒前
追寻夜香完成签到,获得积分10
5秒前
青石完成签到,获得积分20
6秒前
6秒前
浩浩大人发布了新的文献求助10
6秒前
白榆发布了新的文献求助10
6秒前
咕噜仔发布了新的文献求助10
7秒前
寒冷书竹发布了新的文献求助10
7秒前
落雨冥完成签到,获得积分10
7秒前
xinchengzhu完成签到,获得积分10
7秒前
7秒前
慕课魔芋完成签到 ,获得积分10
8秒前
8秒前
左丘幼旋1完成签到,获得积分10
8秒前
无奈的胡萝卜完成签到,获得积分10
9秒前
9秒前
科研通AI5应助优雅的琳采纳,获得10
9秒前
机灵的囧完成签到,获得积分10
10秒前
时光完成签到,获得积分10
10秒前
七大洋的风完成签到,获得积分10
10秒前
左丘幼旋1发布了新的文献求助10
11秒前
amumu发布了新的文献求助10
11秒前
三金发布了新的文献求助10
11秒前
13秒前
kingwill应助明天更好采纳,获得20
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678