已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detection and classification of microcalcifications in mammograms images using difference filter and Yolov4 deep learning model

计算机科学 人工智能 深度学习 模式识别(心理学) 滤波器(信号处理) 计算机视觉
作者
Ayşe Aydın Yurdusev,Kemal Adem,Mahmut Hekim
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:80: 104360-104360 被引量:19
标识
DOI:10.1016/j.bspc.2022.104360
摘要

In this study, we focus on increasing the visibility of microcalcifications (MCs) in mammogram images by means of the difference filter and classifying the visibility-increased MCs by using Yolov4 deep learning model. The same classification experiments are reperformed for also the widely used Faster R-CNN deep learning model to compare with the proposed approach. For this aim, the difference filter is applied to the sections taken from normal and abnormal labeled mammogram images, and the filtered images are used as inputs to Yolov4 and Faster R-CNN models in order to classify as normal and abnormal. In order to show the contribution of the difference filter to the classification success, the experiments are reimplemented without using the difference filter. The difference filter based on the neighborhood relations of the image pixels significantly improves the classification success ratios of the classifier models used in the study since it increases especially the visibility of the rounded edges and makes microcalcifications in the image more prominent. As a result, the experiments show that the use of deep learning models together with the difference filter contributes significantly to the classification success. Finally, this study gives rise to the idea that it can greatly contribute to studies reading of the mammograms with MCs (abnormal) highlighted by the use of difference filter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助优秀的枕头采纳,获得10
1秒前
3秒前
洁白的故人完成签到 ,获得积分10
6秒前
萱萱完成签到,获得积分10
6秒前
画个饼充饥完成签到,获得积分10
8秒前
伶俐的高烽完成签到 ,获得积分10
11秒前
慕子默完成签到,获得积分10
12秒前
19秒前
zzy完成签到 ,获得积分10
20秒前
21秒前
21秒前
辛夷发布了新的文献求助10
24秒前
only完成签到 ,获得积分10
24秒前
江姜酱先生完成签到,获得积分10
24秒前
Jasonjoey发布了新的文献求助10
24秒前
小真白发布了新的文献求助10
24秒前
充电宝应助科研通管家采纳,获得10
25秒前
SciGPT应助科研通管家采纳,获得10
25秒前
搜集达人应助科研通管家采纳,获得10
25秒前
aldehyde应助科研通管家采纳,获得10
25秒前
25秒前
大模型应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得50
25秒前
25秒前
Owen应助科研通管家采纳,获得10
25秒前
清欢完成签到,获得积分10
29秒前
Li发布了新的文献求助10
30秒前
Jasonjoey完成签到,获得积分10
32秒前
33秒前
天天快乐应助Li采纳,获得10
36秒前
大个应助悠悠我心采纳,获得30
37秒前
小冠军完成签到,获得积分10
37秒前
39秒前
害羞便当完成签到 ,获得积分10
39秒前
情怀应助小刘采纳,获得10
40秒前
zhouleiwang发布了新的文献求助10
40秒前
斯文败类应助bing采纳,获得10
42秒前
大胆灵竹发布了新的文献求助10
45秒前
48秒前
希望天下0贩的0应助sigrid采纳,获得10
51秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989989
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256053
捐赠科研通 3270900
什么是DOI,文献DOI怎么找? 1805105
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216