Detection and classification of microcalcifications in mammograms images using difference filter and Yolov4 deep learning model

计算机科学 人工智能 深度学习 模式识别(心理学) 滤波器(信号处理) 计算机视觉
作者
Ayşe Aydın Yurdusev,Kemal Adem,Mahmut Hekim
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104360-104360 被引量:19
标识
DOI:10.1016/j.bspc.2022.104360
摘要

In this study, we focus on increasing the visibility of microcalcifications (MCs) in mammogram images by means of the difference filter and classifying the visibility-increased MCs by using Yolov4 deep learning model. The same classification experiments are reperformed for also the widely used Faster R-CNN deep learning model to compare with the proposed approach. For this aim, the difference filter is applied to the sections taken from normal and abnormal labeled mammogram images, and the filtered images are used as inputs to Yolov4 and Faster R-CNN models in order to classify as normal and abnormal. In order to show the contribution of the difference filter to the classification success, the experiments are reimplemented without using the difference filter. The difference filter based on the neighborhood relations of the image pixels significantly improves the classification success ratios of the classifier models used in the study since it increases especially the visibility of the rounded edges and makes microcalcifications in the image more prominent. As a result, the experiments show that the use of deep learning models together with the difference filter contributes significantly to the classification success. Finally, this study gives rise to the idea that it can greatly contribute to studies reading of the mammograms with MCs (abnormal) highlighted by the use of difference filter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
共享精神应助自觉的小凝采纳,获得10
6秒前
JamesPei应助琪求好运采纳,获得10
6秒前
7秒前
7秒前
7秒前
guard发布了新的文献求助10
7秒前
Sweety-完成签到 ,获得积分10
8秒前
8秒前
达拉崩吧完成签到,获得积分10
9秒前
童万明完成签到,获得积分20
10秒前
没烦恼完成签到,获得积分10
11秒前
zz完成签到 ,获得积分10
11秒前
Owen应助TingtingGZ采纳,获得10
11秒前
pomfret完成签到 ,获得积分10
13秒前
没烦恼发布了新的文献求助10
15秒前
童万明发布了新的文献求助10
15秒前
阳阳完成签到,获得积分10
16秒前
21秒前
四月是你的谎言完成签到 ,获得积分10
25秒前
王昭完成签到 ,获得积分10
26秒前
112233发布了新的文献求助20
26秒前
27秒前
27秒前
富华路完成签到,获得积分10
28秒前
28秒前
28秒前
壮观青亦完成签到 ,获得积分10
29秒前
祁问儿完成签到 ,获得积分10
30秒前
Ccccn完成签到,获得积分10
30秒前
31秒前
32秒前
不吃香菜发布了新的文献求助30
33秒前
RLV完成签到,获得积分10
33秒前
Shuaibin_Pei发布了新的文献求助10
35秒前
科研混子完成签到,获得积分10
36秒前
王志新完成签到,获得积分10
37秒前
dly7777发布了新的文献求助10
37秒前
cff完成签到,获得积分10
38秒前
老鼠咕噜发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511