Detection and classification of microcalcifications in mammograms images using difference filter and Yolov4 deep learning model

计算机科学 人工智能 深度学习 模式识别(心理学) 滤波器(信号处理) 计算机视觉
作者
Ayşe Aydın Yurdusev,Kemal Adem,Mahmut Hekim
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:80: 104360-104360 被引量:19
标识
DOI:10.1016/j.bspc.2022.104360
摘要

In this study, we focus on increasing the visibility of microcalcifications (MCs) in mammogram images by means of the difference filter and classifying the visibility-increased MCs by using Yolov4 deep learning model. The same classification experiments are reperformed for also the widely used Faster R-CNN deep learning model to compare with the proposed approach. For this aim, the difference filter is applied to the sections taken from normal and abnormal labeled mammogram images, and the filtered images are used as inputs to Yolov4 and Faster R-CNN models in order to classify as normal and abnormal. In order to show the contribution of the difference filter to the classification success, the experiments are reimplemented without using the difference filter. The difference filter based on the neighborhood relations of the image pixels significantly improves the classification success ratios of the classifier models used in the study since it increases especially the visibility of the rounded edges and makes microcalcifications in the image more prominent. As a result, the experiments show that the use of deep learning models together with the difference filter contributes significantly to the classification success. Finally, this study gives rise to the idea that it can greatly contribute to studies reading of the mammograms with MCs (abnormal) highlighted by the use of difference filter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
001完成签到,获得积分10
刚刚
开着飞机骑拖拉机完成签到,获得积分10
刚刚
寇婧怡完成签到 ,获得积分10
1秒前
阿湫发布了新的文献求助10
1秒前
Qsss发布了新的文献求助10
1秒前
1秒前
2秒前
JamesPei应助111采纳,获得10
2秒前
执笔完成签到,获得积分10
2秒前
手可摘星辰完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
李健应助大帅采纳,获得10
4秒前
5秒前
冷艳的火龙果完成签到,获得积分10
5秒前
不知完成签到 ,获得积分10
5秒前
Zard发布了新的文献求助10
7秒前
清仔发布了新的文献求助10
7秒前
8秒前
大地上的鱼完成签到,获得积分10
8秒前
8秒前
上官若男应助平常的路人采纳,获得10
8秒前
小花发布了新的文献求助10
9秒前
庸俗完成签到,获得积分10
10秒前
11秒前
论文顺利发布了新的文献求助10
11秒前
11秒前
砚行书完成签到,获得积分10
11秒前
CodeCraft应助Qsss采纳,获得10
11秒前
情怀应助葫芦娃采纳,获得10
12秒前
小慈爱鸡完成签到 ,获得积分10
12秒前
ttelsa完成签到,获得积分10
12秒前
年轻小之完成签到 ,获得积分10
12秒前
12秒前
snowdream发布了新的文献求助10
13秒前
xiaoying完成签到,获得积分10
13秒前
15秒前
大帅发布了新的文献求助10
15秒前
深情丸子发布了新的文献求助10
15秒前
通通真行完成签到,获得积分10
16秒前
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048