Detection and classification of microcalcifications in mammograms images using difference filter and Yolov4 deep learning model

计算机科学 人工智能 深度学习 模式识别(心理学) 滤波器(信号处理) 计算机视觉
作者
Ayşe Aydın Yurdusev,Kemal Adem,Mahmut Hekim
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104360-104360 被引量:19
标识
DOI:10.1016/j.bspc.2022.104360
摘要

In this study, we focus on increasing the visibility of microcalcifications (MCs) in mammogram images by means of the difference filter and classifying the visibility-increased MCs by using Yolov4 deep learning model. The same classification experiments are reperformed for also the widely used Faster R-CNN deep learning model to compare with the proposed approach. For this aim, the difference filter is applied to the sections taken from normal and abnormal labeled mammogram images, and the filtered images are used as inputs to Yolov4 and Faster R-CNN models in order to classify as normal and abnormal. In order to show the contribution of the difference filter to the classification success, the experiments are reimplemented without using the difference filter. The difference filter based on the neighborhood relations of the image pixels significantly improves the classification success ratios of the classifier models used in the study since it increases especially the visibility of the rounded edges and makes microcalcifications in the image more prominent. As a result, the experiments show that the use of deep learning models together with the difference filter contributes significantly to the classification success. Finally, this study gives rise to the idea that it can greatly contribute to studies reading of the mammograms with MCs (abnormal) highlighted by the use of difference filter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北至完成签到,获得积分10
3秒前
3秒前
harrintong完成签到,获得积分10
5秒前
5秒前
北斗HH完成签到,获得积分10
5秒前
6秒前
数学情缘完成签到 ,获得积分10
7秒前
斯文败类应助朴实凝雁采纳,获得10
9秒前
景穆发布了新的文献求助10
12秒前
子规向晚完成签到,获得积分10
13秒前
爆米花应助你以为你是谁采纳,获得10
13秒前
Tina完成签到 ,获得积分10
14秒前
学霸宇大王完成签到,获得积分10
15秒前
栗子完成签到,获得积分10
18秒前
乐乐乐乐乐乐应助tlx采纳,获得20
19秒前
20秒前
liherong发布了新的文献求助30
20秒前
21秒前
21秒前
22秒前
天天快乐应助调皮的志泽采纳,获得10
25秒前
OPV发布了新的文献求助10
26秒前
北至发布了新的文献求助10
26秒前
Hobby完成签到,获得积分0
27秒前
27秒前
tlx完成签到,获得积分10
28秒前
田様应助景穆采纳,获得10
29秒前
陈隆完成签到,获得积分10
29秒前
30秒前
车 干完成签到 ,获得积分10
31秒前
万灵竹完成签到 ,获得积分10
31秒前
32秒前
少年啊完成签到,获得积分10
32秒前
景穆完成签到,获得积分10
35秒前
zzl完成签到 ,获得积分10
35秒前
35秒前
emma完成签到,获得积分20
36秒前
36秒前
无奈小白发布了新的文献求助10
37秒前
37秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339611
求助须知:如何正确求助?哪些是违规求助? 2967543
关于积分的说明 8630284
捐赠科研通 2647087
什么是DOI,文献DOI怎么找? 1449480
科研通“疑难数据库(出版商)”最低求助积分说明 671418
邀请新用户注册赠送积分活动 660337