Generating traceable adversarial text examples by watermarking in the semantic space

对抗制 计算机科学 稳健性(进化) 人工智能 正确性 自然语言处理 跟踪(心理语言学) 算法 语言学 生物化学 基因 哲学 化学
作者
Mingjie Li,Hanzhou Wu,Xinpeng Zhang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:31 (06)
标识
DOI:10.1117/1.jei.31.6.063034
摘要

The adversarial examples have been proven to reveal the vulnerability of the deep neural networks (DNNs) model, which can be used to evaluate the performance and further improve the robustness of the model. Because text data is discrete, it is more difficult to generate adversarial examples in the natural language processing (NLP) domain than in the image domain. One of the challenges is that the generated adversarial text examples should maintain the correctness of grammar and the semantic similarity compared with the original texts. In this paper, we propose an adversarial text generation model, which generates high-quality adversarial text examples through an end-to-end model. Moreover, the adversarial text examples generated by our proposed model are embedded with watermarks, which can mark and trace the source of the generated adversarial text examples and prevent the model from being maliciously or illegally used. The experimental results show that the attack success rates of the proposed model can still reach higher than 88% even on the AG’s News dataset where generating adversarial text examples is more difficult. And the quality of adversarial text examples generated by the proposed model is higher than that of the baseline models. At the same time, because of the generated adversarial text examples are embedded with strong robust watermarks, the model can be better protected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
阿尼完成签到,获得积分10
1秒前
1秒前
liudw发布了新的文献求助10
2秒前
anny2022发布了新的文献求助10
2秒前
swordlee发布了新的文献求助10
3秒前
3秒前
烟花应助Nicy采纳,获得10
4秒前
大意的晓亦完成签到 ,获得积分10
5秒前
陶醉的萧发布了新的文献求助10
6秒前
深情安青应助挑片岛屿采纳,获得30
6秒前
6秒前
6秒前
JingyuHuang发布了新的文献求助10
6秒前
7秒前
ychao完成签到,获得积分10
7秒前
丘比特应助高兴的斑马采纳,获得10
8秒前
hui发布了新的文献求助10
8秒前
科研通AI5应助路人丨安采纳,获得10
8秒前
9秒前
阿发发布了新的文献求助10
9秒前
444完成签到,获得积分10
10秒前
科研通AI5应助hhh采纳,获得10
10秒前
852应助真实的青旋采纳,获得10
12秒前
dsa2815发布了新的文献求助10
12秒前
12秒前
13秒前
大眼睛的草莓完成签到,获得积分10
13秒前
上官若男应助铁盐君采纳,获得10
14秒前
14秒前
洋子完成签到 ,获得积分10
15秒前
阿狸发布了新的文献求助10
15秒前
15秒前
wyj发布了新的文献求助10
16秒前
加依娜完成签到,获得积分20
17秒前
18秒前
领导范儿应助xqxq采纳,获得10
18秒前
挑片岛屿发布了新的文献求助30
19秒前
Joshua发布了新的文献求助10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546392
求助须知:如何正确求助?哪些是违规求助? 3123535
关于积分的说明 9355677
捐赠科研通 2822080
什么是DOI,文献DOI怎么找? 1551259
邀请新用户注册赠送积分活动 723282
科研通“疑难数据库(出版商)”最低求助积分说明 713690