Performance Analysis of the Temperature and Humidity Profiles Retrieval for FY-3D/MWTHS in Arctic Regions

湿度 环境科学 遥感 北极的 气象学 人工神经网络 计算机科学 发射率 风速 人工智能 地质学 地理 物理 海洋学 光学
作者
Lanjie Zhang,Shengru Tie,Qianyu He,Wenyu Wang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (22): 5858-5858 被引量:1
标识
DOI:10.3390/rs14225858
摘要

The special geographical location of the polar regions increases the difficulty of modeling surface emissivity, thus the physical retrieval algorithms of the temperature and humidity profiles for microwave radiometers mainly focus on the regions between 60°S and 60°N. In this paper, the deep neural networks (DNN) and long short-term memory (LSTM) models are first implemented to retrieve atmospheric temperature and humidity profiles in real time from FY-3D/MWHTS in Arctic regions and are compared with the physical retrieval algorithm. The hyperparameters of the machine learning models are determined using the grid search and 10-fold cross-validation. Results show that, compared with the physical retrieval algorithm, the retrieval accuracies of the atmospheric temperature and humidity profiles of the DNN and LSTM models in June 2021 are higher over sea ice, and the maximum retrieval accuracies are improved by about 3.5 K and 42%. Over land, the retrieval accuracies of the atmospheric temperature profiles for the DNN and LSTM models in June 2021 are improved by about 5 K. The retrieved humidity results for these two models are not compared with the physical retrieval algorithm, which fails for the humidity profile retrieval over land. In addition, the retrieval results of the DNN-based and LSTM-based models using the independent validation data in February, April, and September are also evaluated over different surface types. The RMSEs of the retrieved temperature profiles for the two models are within 4 K, except for the near-surface, and the humidity profiles are within 25%, except for in February. The temperature profiles in September and the humidity profiles in February are somewhat reduced compared to other months because of the highly variable emissivity properties in autumn and winter. Overall results show that the machine learning method can well-evaluate the retrieval capability of FY-3D/MWHTS of the atmospheric temperature and humidity profiles in Arctic regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有点甜完成签到,获得积分10
刚刚
Lucas应助桃也雾漫漫采纳,获得10
1秒前
婷妮哒哒发布了新的文献求助10
1秒前
1秒前
3秒前
3秒前
4秒前
科研通AI2S应助阿夸采纳,获得10
4秒前
舒适的方盒完成签到 ,获得积分10
5秒前
6秒前
6秒前
suli完成签到 ,获得积分10
6秒前
7秒前
7秒前
wanci应助婷妮哒哒采纳,获得10
7秒前
8秒前
吴子行发布了新的文献求助10
9秒前
suli关注了科研通微信公众号
10秒前
秋秋发布了新的文献求助10
10秒前
12秒前
半个芝士发布了新的文献求助80
12秒前
13秒前
elooo发布了新的文献求助10
13秒前
Bae发布了新的文献求助10
13秒前
李健应助邱小七采纳,获得10
13秒前
CipherSage应助吴子行采纳,获得10
14秒前
LUMEN完成签到,获得积分10
14秒前
16秒前
秋秋完成签到,获得积分10
16秒前
17秒前
传统的纸飞机完成签到 ,获得积分10
17秒前
七七完成签到,获得积分20
18秒前
18秒前
831143完成签到 ,获得积分0
19秒前
19秒前
鳗鱼三毒发布了新的文献求助10
21秒前
半个芝士完成签到,获得积分10
22秒前
song发布了新的文献求助10
23秒前
23秒前
永远少年完成签到,获得积分10
24秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
The Data Economy: Tools and Applications 1000
Diamonds: Properties, Synthesis and Applications 800
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufen 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3097793
求助须知:如何正确求助?哪些是违规求助? 2749704
关于积分的说明 7605682
捐赠科研通 2401576
什么是DOI,文献DOI怎么找? 1274203
科研通“疑难数据库(出版商)”最低求助积分说明 616015
版权声明 599016