亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Performance Analysis of the Temperature and Humidity Profiles Retrieval for FY-3D/MWTHS in Arctic Regions

湿度 环境科学 遥感 北极的 气象学 人工神经网络 计算机科学 发射率 风速 人工智能 地质学 地理 物理 海洋学 光学
作者
Lanjie Zhang,Shengru Tie,Qianyu He,Wenyu Wang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (22): 5858-5858 被引量:1
标识
DOI:10.3390/rs14225858
摘要

The special geographical location of the polar regions increases the difficulty of modeling surface emissivity, thus the physical retrieval algorithms of the temperature and humidity profiles for microwave radiometers mainly focus on the regions between 60°S and 60°N. In this paper, the deep neural networks (DNN) and long short-term memory (LSTM) models are first implemented to retrieve atmospheric temperature and humidity profiles in real time from FY-3D/MWHTS in Arctic regions and are compared with the physical retrieval algorithm. The hyperparameters of the machine learning models are determined using the grid search and 10-fold cross-validation. Results show that, compared with the physical retrieval algorithm, the retrieval accuracies of the atmospheric temperature and humidity profiles of the DNN and LSTM models in June 2021 are higher over sea ice, and the maximum retrieval accuracies are improved by about 3.5 K and 42%. Over land, the retrieval accuracies of the atmospheric temperature profiles for the DNN and LSTM models in June 2021 are improved by about 5 K. The retrieved humidity results for these two models are not compared with the physical retrieval algorithm, which fails for the humidity profile retrieval over land. In addition, the retrieval results of the DNN-based and LSTM-based models using the independent validation data in February, April, and September are also evaluated over different surface types. The RMSEs of the retrieved temperature profiles for the two models are within 4 K, except for the near-surface, and the humidity profiles are within 25%, except for in February. The temperature profiles in September and the humidity profiles in February are somewhat reduced compared to other months because of the highly variable emissivity properties in autumn and winter. Overall results show that the machine learning method can well-evaluate the retrieval capability of FY-3D/MWHTS of the atmospheric temperature and humidity profiles in Arctic regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雪白智宸完成签到 ,获得积分10
8秒前
思源应助lbjcp3采纳,获得10
14秒前
吕半鬼完成签到,获得积分10
14秒前
故意的问安完成签到 ,获得积分10
16秒前
25秒前
30秒前
32秒前
lbjcp3发布了新的文献求助10
35秒前
壮观的抽屉完成签到,获得积分10
40秒前
迅速的蜡烛完成签到 ,获得积分10
40秒前
55秒前
janie发布了新的文献求助50
1分钟前
1分钟前
zhangxr发布了新的文献求助10
1分钟前
1分钟前
1分钟前
dww完成签到,获得积分10
1分钟前
xueying6767发布了新的文献求助10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
jason完成签到,获得积分0
1分钟前
orixero应助爱听歌笑寒采纳,获得10
2分钟前
2分钟前
2分钟前
Aaaaaa瘾发布了新的文献求助10
2分钟前
2分钟前
怡然的友容完成签到 ,获得积分10
2分钟前
朱朱子完成签到 ,获得积分10
2分钟前
科研通AI2S应助晏紫苏采纳,获得10
2分钟前
2分钟前
阿尼亚发布了新的文献求助10
2分钟前
s1lence完成签到,获得积分10
2分钟前
哒哒哒完成签到 ,获得积分10
3分钟前
土豆泥拌土豆块完成签到 ,获得积分10
3分钟前
morena应助科研通管家采纳,获得20
3分钟前
Aaaaaa瘾发布了新的文献求助10
3分钟前
英俊的铭应助Aaaaaa瘾采纳,获得10
4分钟前
隐形曼青应助喵喵采纳,获得30
4分钟前
hm发布了新的文献求助10
4分钟前
Jennifer完成签到 ,获得积分10
4分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139548
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795255
捐赠科研通 2446905
什么是DOI,文献DOI怎么找? 1301487
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146