Termite life cycle optimizer

水准点(测量) 计算机科学 人口 数学优化 启发式 全局优化 趋同(经济学) 蚁群优化算法 灵活性(工程) 算法 数学 人工智能 统计 人口学 大地测量学 社会学 经济增长 经济 地理
作者
Hoang-Le Minh,Thanh Sang-To,Guy Théraulaz,Magd Abdel Wahab,Thanh Cuong‐Le
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:213: 119211-119211 被引量:53
标识
DOI:10.1016/j.eswa.2022.119211
摘要

This paper introduces a novel bio-inspired meta-heuristic optimization algorithm, named termite life cycle optimizer (TLCO), which is based on both the life cycle of a termite colony and the modulation of movement strategies used by many animal species in nature. Termite colonies are comprised of three distinct castes: the workers, the soldiers and the reproductive termites. Each caste undertakes a set of specific tasks that ensure the growth and survival of the colony. TLCO mimics the activities of these three castes that are implemented in a mathematical model. The model is then used to find the global optimum in classic optimization problems. First, the behaviors of the workers, soldiers and reproductive termites are used to simulate a balance between the tasks of exploration and exploitation. Second, the initial population securely records the information obtained at each iteration and transmits it to workers and soldiers at the next iteration. This process is repeated until the global optimum is found with the smallest error. Besides, a new proposed function combined with Lévy flight is used to modulate the movement of termites that increases its flexibility. Thus, TLCO can cover both long distances during the first iterations to improve the convergence rate and shorter distances during the last iterations to enhance the level of accuracy. We then compare the performances of TLCO with other well-known nature-inspired algorithms using 23 classical benchmark functions, CEC2005 benchmark functions, and five real engineering design problems. The results demonstrate the effectiveness and reliability of TLCO in solving these optimization problems. Source codes of TLCO is publicly available at http://goldensolutionrs.com/termite-life-cycle-optimizer.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
宗磬完成签到,获得积分10
1秒前
NexusExplorer应助搞怪不言采纳,获得10
2秒前
科研通AI5应助一天八杯水采纳,获得10
3秒前
3秒前
3秒前
4秒前
大模型应助琪琪扬扬采纳,获得10
5秒前
丘比特应助琪琪扬扬采纳,获得10
5秒前
共享精神应助琪琪扬扬采纳,获得10
5秒前
JamesPei应助dafwfwaf采纳,获得10
5秒前
叶子完成签到,获得积分10
5秒前
xuyun完成签到,获得积分10
5秒前
脑洞疼应助木棉采纳,获得10
5秒前
GGG发布了新的文献求助10
5秒前
zena92完成签到,获得积分10
6秒前
6秒前
听风发布了新的文献求助10
7秒前
一一发布了新的文献求助10
7秒前
CC完成签到,获得积分20
8秒前
9秒前
时生111完成签到 ,获得积分10
9秒前
kb发布了新的文献求助10
10秒前
dafwfwaf完成签到,获得积分20
10秒前
Snow完成签到 ,获得积分10
11秒前
11秒前
CC发布了新的文献求助10
11秒前
小苏打完成签到,获得积分10
12秒前
Xiaoxiao应助程琳采纳,获得10
12秒前
ycc完成签到 ,获得积分10
12秒前
畏寒的北完成签到,获得积分10
13秒前
爆米花应助单纯的雅香采纳,获得10
13秒前
俭朴的玉兰完成签到 ,获得积分10
13秒前
14秒前
14秒前
15秒前
15秒前
15秒前
adazbd发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808