Sketch2Photo: Synthesizing photo-realistic images from sketches via global contexts

计算机科学 素描 人工智能 联营 特征(语言学) 地点 卷积(计算机科学) 模式识别(心理学) 算法 人工神经网络 语言学 哲学
作者
Heng Liu,Xu Yao,Feng Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:117: 105608-105608 被引量:22
标识
DOI:10.1016/j.engappai.2022.105608
摘要

Sketch-to-image synthesis aims to generate realistic images that match the input sketches or edge maps exactly. Most known sketch-to-image synthesis methods use various generative adversarial networks (GANs) that are trained with numerous pairs of sketches and real images. Because of the convolution locality, the low-level layers of the generators in these GANs lack global perception ability, causing feature maps derived from them easily to overlook global cues. Since the global receptive field is crucial for acquiring the non-local structures and features of sketches, the absence of global contexts will impact the generation of high-quality images. Some recent models turn to self-attention to construct global dependencies. However, they are not viable for large feature maps for the quadratic computational complexity concerning the size of feature maps. To address these problems, in this work, we propose Sketch2Photo — a new image synthesis approach that can capture global contexts as well as local features to generate photo-realistic images from weak or partial sketches or edge maps. We employ fast Fourier convolution (FFC) residual blocks to create global receptive fields in the bottom layers of the network and incorporate Swin Transformer block (STB) units to obtain long-range global contexts for large-size feature maps efficiently. We also present an improved spatial attention pooling (ISAP) module to relax the strict alignment requirements between incomplete sketches and generated images. Quantitative and qualitative experiments on multiple public datasets demonstrate the superiority of the proposed approach over many other sketch-to-image synthesis methods. The project code is available at https://github.com/hengliusky/Skecth2Photo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李顺完成签到,获得积分20
1秒前
ayin发布了新的文献求助10
1秒前
wait发布了新的文献求助10
1秒前
我是站长才怪应助xg采纳,获得10
2秒前
童话艺术佳完成签到,获得积分10
2秒前
稀罕你完成签到,获得积分10
2秒前
junzilan发布了新的文献求助10
2秒前
anny.white完成签到,获得积分10
3秒前
科研通AI5应助平常的毛豆采纳,获得10
5秒前
SciGPT应助paul采纳,获得10
8秒前
10秒前
英姑应助书生采纳,获得10
11秒前
科研钓鱼佬完成签到,获得积分10
12秒前
14秒前
petrichor应助C_Cppp采纳,获得10
14秒前
nan完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
勤恳的雨文完成签到,获得积分10
15秒前
木森ab发布了新的文献求助10
16秒前
paul完成签到,获得积分10
16秒前
小鞋完成签到,获得积分10
17秒前
开心青旋发布了新的文献求助10
17秒前
fztnh发布了新的文献求助10
17秒前
无名花生完成签到 ,获得积分10
17秒前
19秒前
20秒前
20秒前
杜若完成签到,获得积分10
20秒前
20秒前
木森ab完成签到,获得积分20
22秒前
paul发布了新的文献求助10
23秒前
24秒前
MEME发布了新的文献求助10
27秒前
27秒前
情怀应助LSH970829采纳,获得10
27秒前
CHINA_C13发布了新的文献求助10
30秒前
Mars发布了新的文献求助10
31秒前
哈哈哈完成签到,获得积分10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824