已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sketch2Photo: Synthesizing photo-realistic images from sketches via global contexts

计算机科学 素描 人工智能 联营 特征(语言学) 地点 卷积(计算机科学) 模式识别(心理学) 算法 人工神经网络 语言学 哲学
作者
Heng Liu,Xu Yao,Feng Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:117: 105608-105608 被引量:22
标识
DOI:10.1016/j.engappai.2022.105608
摘要

Sketch-to-image synthesis aims to generate realistic images that match the input sketches or edge maps exactly. Most known sketch-to-image synthesis methods use various generative adversarial networks (GANs) that are trained with numerous pairs of sketches and real images. Because of the convolution locality, the low-level layers of the generators in these GANs lack global perception ability, causing feature maps derived from them easily to overlook global cues. Since the global receptive field is crucial for acquiring the non-local structures and features of sketches, the absence of global contexts will impact the generation of high-quality images. Some recent models turn to self-attention to construct global dependencies. However, they are not viable for large feature maps for the quadratic computational complexity concerning the size of feature maps. To address these problems, in this work, we propose Sketch2Photo — a new image synthesis approach that can capture global contexts as well as local features to generate photo-realistic images from weak or partial sketches or edge maps. We employ fast Fourier convolution (FFC) residual blocks to create global receptive fields in the bottom layers of the network and incorporate Swin Transformer block (STB) units to obtain long-range global contexts for large-size feature maps efficiently. We also present an improved spatial attention pooling (ISAP) module to relax the strict alignment requirements between incomplete sketches and generated images. Quantitative and qualitative experiments on multiple public datasets demonstrate the superiority of the proposed approach over many other sketch-to-image synthesis methods. The project code is available at https://github.com/hengliusky/Skecth2Photo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yourkit发布了新的文献求助30
2秒前
万能图书馆应助萝卜青菜采纳,获得30
2秒前
AS完成签到,获得积分10
3秒前
JamesPei应助松松果采纳,获得10
3秒前
科目三应助施春婷aaa采纳,获得10
3秒前
小吴完成签到,获得积分10
4秒前
qsq完成签到 ,获得积分10
4秒前
哈哈完成签到 ,获得积分10
5秒前
JamesPei应助wysci采纳,获得10
8秒前
初眠完成签到,获得积分10
8秒前
Bottle完成签到,获得积分10
13秒前
13秒前
13秒前
yao驳回了changping应助
14秒前
YuuuY发布了新的文献求助10
14秒前
余哈哈发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
22秒前
帅气天荷完成签到 ,获得积分10
23秒前
施春婷aaa发布了新的文献求助10
24秒前
沉沉浮完成签到 ,获得积分20
24秒前
hsy发布了新的文献求助10
25秒前
25秒前
喜悦的秋双关注了科研通微信公众号
28秒前
共享精神应助hsy采纳,获得10
28秒前
柳易槐完成签到,获得积分10
28秒前
科研通AI5应助jbtjht采纳,获得10
29秒前
30秒前
piupiu完成签到,获得积分10
31秒前
Ava应助蓝田采纳,获得10
32秒前
ww发布了新的文献求助30
34秒前
充电宝应助hrpppp采纳,获得30
35秒前
davedavedave完成签到 ,获得积分10
35秒前
超帅的小白菜完成签到,获得积分10
36秒前
37秒前
XL神放完成签到 ,获得积分10
38秒前
39秒前
41秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209090
求助须知:如何正确求助?哪些是违规求助? 4386405
关于积分的说明 13660783
捐赠科研通 4245503
什么是DOI,文献DOI怎么找? 2329333
邀请新用户注册赠送积分活动 1327184
关于科研通互助平台的介绍 1279467