Sketch2Photo: Synthesizing photo-realistic images from sketches via global contexts

计算机科学 素描 人工智能 联营 特征(语言学) 地点 卷积(计算机科学) 模式识别(心理学) 算法 人工神经网络 语言学 哲学
作者
Heng Liu,Xu Yao,Feng Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:117: 105608-105608 被引量:22
标识
DOI:10.1016/j.engappai.2022.105608
摘要

Sketch-to-image synthesis aims to generate realistic images that match the input sketches or edge maps exactly. Most known sketch-to-image synthesis methods use various generative adversarial networks (GANs) that are trained with numerous pairs of sketches and real images. Because of the convolution locality, the low-level layers of the generators in these GANs lack global perception ability, causing feature maps derived from them easily to overlook global cues. Since the global receptive field is crucial for acquiring the non-local structures and features of sketches, the absence of global contexts will impact the generation of high-quality images. Some recent models turn to self-attention to construct global dependencies. However, they are not viable for large feature maps for the quadratic computational complexity concerning the size of feature maps. To address these problems, in this work, we propose Sketch2Photo — a new image synthesis approach that can capture global contexts as well as local features to generate photo-realistic images from weak or partial sketches or edge maps. We employ fast Fourier convolution (FFC) residual blocks to create global receptive fields in the bottom layers of the network and incorporate Swin Transformer block (STB) units to obtain long-range global contexts for large-size feature maps efficiently. We also present an improved spatial attention pooling (ISAP) module to relax the strict alignment requirements between incomplete sketches and generated images. Quantitative and qualitative experiments on multiple public datasets demonstrate the superiority of the proposed approach over many other sketch-to-image synthesis methods. The project code is available at https://github.com/hengliusky/Skecth2Photo.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kingwill应助科研通管家采纳,获得20
刚刚
在水一方应助科研通管家采纳,获得10
1秒前
1秒前
wanci应助科研通管家采纳,获得10
1秒前
Ky_Mac应助科研通管家采纳,获得30
1秒前
kingwill应助科研通管家采纳,获得20
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
Ky_Mac应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
蜀安应助科研通管家采纳,获得30
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
小郭子应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
wy.he应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
chen应助科研通管家采纳,获得10
2秒前
wy.he应助科研通管家采纳,获得10
2秒前
小郭子应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得30
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
小郭子应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
吴溪月发布了新的文献求助10
4秒前
轨迹应助白山茶采纳,获得30
4秒前
一灯大师发布了新的文献求助10
4秒前
戴院士发布了新的文献求助10
5秒前
1234完成签到 ,获得积分10
6秒前
不知完成签到,获得积分10
6秒前
忧郁平蝶完成签到,获得积分10
7秒前
牛哥发布了新的文献求助10
8秒前
陈寯发布了新的文献求助50
8秒前
Lampe应助yan采纳,获得30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742035
求助须知:如何正确求助?哪些是违规求助? 5405283
关于积分的说明 15343770
捐赠科研通 4883510
什么是DOI,文献DOI怎么找? 2625039
邀请新用户注册赠送积分活动 1573909
关于科研通互助平台的介绍 1530861