CNT-Reinforced Self-Healable Epoxy Dynamic Networks Based on Disulfide Bond Exchange

环氧树脂 热固性聚合物 材料科学 碳纳米管 聚合物 极限抗拉强度 复合材料 刚度 胶粘剂 共价键 自愈 化学 有机化学 医学 替代医学 图层(电子) 病理
作者
Cigdem Caglayan,Geonwoo Kim,Gun Jin Yun
出处
期刊:ACS omega [American Chemical Society]
卷期号:7 (48): 43480-43491 被引量:8
标识
DOI:10.1021/acsomega.2c03910
摘要

The design and utilization of polymers with healing capability have drawn increasing attention owing to their enhanced chain mobility and opportunity to heal minor cracks in composites. Rehealable thermoset polymers promise reduction in the maintenance cost and thus prolonged lifetime, reshaping, and recyclability. Introducing reversible covalent bonds is the mainstay strategy to achieve such plasticity in crosslinked polymers. Herein, we report a dynamic epoxy, which includes associative covalent adaptive networks (CANs) based on disulfide exchange bonds. Epoxy resin is chosen to study rehealing, as it is one of the most critical thermosetting polymers for various industries from aerospace to soft robotics. This study enlightens us about not only the consequences of CANs in the epoxy but also various factors such as soft segments and carbon nanotubes (CNTs). Epoxy dynamic networks are investigated in an attempt to explore the synergistic effect of the soft-segmented resins and CNTs on the healing and reshaping characteristics of epoxy networks along with varying stiffness. This research discusses epoxy dynamic networks in three main aspects: crosslink density, CAN density, and CNTs. Introducing soft segments into the epoxy network enhances the healing efficiency due to the increased chain mobility. A higher CAN density accelerates network rearrangement, improving the healing efficiency. It should also be noted that even with a low weight fraction of nanotubes, CNT-reinforced samples restored their initial strength more than neat samples after healing. The tensile strength of dynamic networks is at least 50 MPa, which is significant for their utility in primary or secondary structural components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
酒洌发布了新的文献求助10
1秒前
不加糖发布了新的文献求助10
1秒前
Hello应助义气的代桃采纳,获得10
2秒前
3秒前
希匀云云完成签到,获得积分10
4秒前
风中莞发布了新的文献求助10
5秒前
yyyrrr发布了新的文献求助10
5秒前
忘情者神殇完成签到,获得积分10
6秒前
Tong应助Sky36001采纳,获得20
6秒前
cyr发布了新的文献求助10
7秒前
嘉禾望岗发布了新的文献求助10
9秒前
9秒前
10秒前
迟大猫应助云朵儿糖采纳,获得10
10秒前
13秒前
14秒前
cy发布了新的文献求助10
16秒前
WZH完成签到,获得积分10
17秒前
zyb发布了新的文献求助10
17秒前
赘婿应助BUCM采纳,获得10
18秒前
老丫大侠完成签到 ,获得积分10
18秒前
wlj发布了新的文献求助10
19秒前
19秒前
义气的代桃完成签到,获得积分20
19秒前
爆米花应助nn采纳,获得10
19秒前
zebra完成签到 ,获得积分10
20秒前
20秒前
小二郎应助打发十分采纳,获得10
22秒前
泡芙完成签到 ,获得积分10
22秒前
DDDD源发布了新的文献求助10
23秒前
科研通AI5应助嘉禾望岗采纳,获得30
23秒前
26秒前
彩色的鹰完成签到 ,获得积分10
26秒前
蒋时晏应助酒洌采纳,获得30
27秒前
28秒前
DJY完成签到 ,获得积分10
29秒前
NexusExplorer应助阿囧桑采纳,获得10
29秒前
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526093
求助须知:如何正确求助?哪些是违规求助? 3106509
关于积分的说明 9280568
捐赠科研通 2804080
什么是DOI,文献DOI怎么找? 1539235
邀请新用户注册赠送积分活动 716514
科研通“疑难数据库(出版商)”最低求助积分说明 709478