The CT-based intratumoral and peritumoral machine learning radiomics analysis in predicting lymph node metastasis in rectal carcinoma

列线图 医学 人工智能 机器学习 朴素贝叶斯分类器 决策树 无线电技术 逻辑回归 支持向量机 淋巴结 贝叶斯定理 放射科 肿瘤科 内科学 计算机科学 贝叶斯概率
作者
Hang Yuan,Xiren Xu,Shiliang Tu,Bingchen Chen,Yuguo Wei,Yanqing Ma
出处
期刊:BMC Gastroenterology [Springer Nature]
卷期号:22 (1) 被引量:7
标识
DOI:10.1186/s12876-022-02525-1
摘要

Abstract Background To construct clinical and machine learning nomogram for predicting the lymph node metastasis (LNM) status of rectal carcinoma (RC) based on radiomics and clinical characteristics. Methods 788 RC patients were enrolled from January 2015 to January 2021, including 303 RCs with LNM and 485 RCs without LNM. The radiomics features were calculated and selected with the methods of variance, correlation analysis, and gradient boosting decision tree. After feature selection, the machine learning algorithms of Bayes, k-nearest neighbor (KNN), logistic regression (LR), support vector machine (SVM), and decision tree (DT) were used to construct prediction models. The clinical characteristics combined with intratumoral and peritumoral radiomics was taken to develop a radiomics and machine learning nomogram. The relative standard deviation (RSD) was used to predict the stability of machine learning algorithms. The area under curves (AUCs) with 95% confidence interval (CI) were calculated to evaluate the predictive efficacy of all models. Results To intratumoral radiomics analysis, the RSD of Bayes was minimal compared with other four machine learning algorithms. The AUCs of arterial-phase based intratumoral Bayes model (0.626 and 0.627) were higher than these of unenhanced-phase and venous-phase ones in both the training and validation group.The AUCs of intratumoral and peritumoral Bayes model were 0.656 in the training group and were 0.638 in the validation group, and the relevant Bayes-score was quantified. The clinical-Bayes nomogram containing significant clinical variables of diameter, PNI, EMVI, CEA, and CA19-9, and Bayes-score was constructed. The AUC (95%CI), specificity, and sensitivity of this nomogram was 0.828 (95%CI, 0.800-0.854), 74.85%, and 77.23%. Conclusion Intratumoral and peritumoral radiomics can help predict the LNM status of RCs. The machine learning algorithm of Bayes in arterial-phase conducted better in consideration of terms of RSD and AUC. The clinical-Bayes nomogram achieved a better performance in predicting the LNM status of RCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YUU完成签到,获得积分10
刚刚
桐桐应助无所屌谓采纳,获得10
1秒前
2秒前
2秒前
Orange应助小罗同学采纳,获得10
2秒前
2秒前
三三完成签到,获得积分10
2秒前
隐形的傲易完成签到 ,获得积分10
2秒前
mt应助中二少女爱喝可乐采纳,获得10
3秒前
大棒槌完成签到,获得积分10
3秒前
杜好好完成签到,获得积分0
4秒前
蒋蒋蒋发布了新的文献求助10
4秒前
5秒前
5秒前
光亮面包完成签到 ,获得积分10
5秒前
大棒槌发布了新的文献求助10
6秒前
苗条绝义应助勤劳的无心采纳,获得10
6秒前
SYLH应助Snoopy采纳,获得10
6秒前
jygjhgy完成签到,获得积分10
7秒前
xhuryts完成签到,获得积分10
7秒前
7秒前
cach完成签到,获得积分10
7秒前
别摆烂了完成签到,获得积分10
7秒前
施耐德发布了新的文献求助10
8秒前
FashionBoy应助白椋采纳,获得10
8秒前
个性南莲完成签到,获得积分10
9秒前
Suge6完成签到,获得积分10
9秒前
英勇金毛发布了新的文献求助10
10秒前
11秒前
欣喜书桃完成签到,获得积分10
11秒前
年轻冥茗完成签到,获得积分10
11秒前
英俊的铭应助志豪采纳,获得10
11秒前
11秒前
云淡风轻一宝完成签到,获得积分10
12秒前
蔡蔡不菜菜完成签到,获得积分10
12秒前
冰儿菲菲完成签到,获得积分10
13秒前
天马行空完成签到,获得积分10
14秒前
14秒前
CAST1347完成签到,获得积分10
14秒前
SYLH应助施耐德采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910