亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The CT-based intratumoral and peritumoral machine learning radiomics analysis in predicting lymph node metastasis in rectal carcinoma

列线图 医学 人工智能 机器学习 朴素贝叶斯分类器 决策树 无线电技术 逻辑回归 支持向量机 淋巴结 贝叶斯定理 放射科 肿瘤科 内科学 计算机科学 贝叶斯概率
作者
Hang Yuan,Xiren Xu,Shiliang Tu,Bingchen Chen,Yuguo Wei,Yanqing Ma
出处
期刊:BMC Gastroenterology [Springer Nature]
卷期号:22 (1) 被引量:7
标识
DOI:10.1186/s12876-022-02525-1
摘要

Abstract Background To construct clinical and machine learning nomogram for predicting the lymph node metastasis (LNM) status of rectal carcinoma (RC) based on radiomics and clinical characteristics. Methods 788 RC patients were enrolled from January 2015 to January 2021, including 303 RCs with LNM and 485 RCs without LNM. The radiomics features were calculated and selected with the methods of variance, correlation analysis, and gradient boosting decision tree. After feature selection, the machine learning algorithms of Bayes, k-nearest neighbor (KNN), logistic regression (LR), support vector machine (SVM), and decision tree (DT) were used to construct prediction models. The clinical characteristics combined with intratumoral and peritumoral radiomics was taken to develop a radiomics and machine learning nomogram. The relative standard deviation (RSD) was used to predict the stability of machine learning algorithms. The area under curves (AUCs) with 95% confidence interval (CI) were calculated to evaluate the predictive efficacy of all models. Results To intratumoral radiomics analysis, the RSD of Bayes was minimal compared with other four machine learning algorithms. The AUCs of arterial-phase based intratumoral Bayes model (0.626 and 0.627) were higher than these of unenhanced-phase and venous-phase ones in both the training and validation group.The AUCs of intratumoral and peritumoral Bayes model were 0.656 in the training group and were 0.638 in the validation group, and the relevant Bayes-score was quantified. The clinical-Bayes nomogram containing significant clinical variables of diameter, PNI, EMVI, CEA, and CA19-9, and Bayes-score was constructed. The AUC (95%CI), specificity, and sensitivity of this nomogram was 0.828 (95%CI, 0.800-0.854), 74.85%, and 77.23%. Conclusion Intratumoral and peritumoral radiomics can help predict the LNM status of RCs. The machine learning algorithm of Bayes in arterial-phase conducted better in consideration of terms of RSD and AUC. The clinical-Bayes nomogram achieved a better performance in predicting the LNM status of RCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
SciGPT应助左左嘀嘀嘀采纳,获得10
6秒前
7秒前
Augustines发布了新的文献求助10
8秒前
10秒前
10秒前
15秒前
Masongyang发布了新的文献求助10
15秒前
本喵不怂发布了新的文献求助10
15秒前
香蕉觅云应助本喵不怂采纳,获得30
20秒前
Augustines完成签到,获得积分10
22秒前
caroline完成签到 ,获得积分10
29秒前
Masongyang完成签到 ,获得积分20
32秒前
57秒前
自然完成签到,获得积分10
1分钟前
hmf1995完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
三幅画发布了新的文献求助10
1分钟前
Legend_完成签到 ,获得积分10
2分钟前
972676742完成签到,获得积分10
2分钟前
2分钟前
972676742发布了新的文献求助10
2分钟前
领导范儿应助187798采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
doubleshake发布了新的文献求助10
3分钟前
h哈哈哈h应助doubleshake采纳,获得10
3分钟前
不可靠的黏菌完成签到,获得积分10
3分钟前
doubleshake完成签到,获得积分10
3分钟前
从容映易完成签到,获得积分10
3分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
orixero应助科研通管家采纳,获得10
3分钟前
3分钟前
前前前世完成签到,获得积分10
3分钟前
戴哈哈发布了新的文献求助10
4分钟前
优雅的凝阳完成签到 ,获得积分10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445112
求助须知:如何正确求助?哪些是违规求助? 3041057
关于积分的说明 8983801
捐赠科研通 2729647
什么是DOI,文献DOI怎么找? 1497123
科研通“疑难数据库(出版商)”最低求助积分说明 692155
邀请新用户注册赠送积分活动 689674