亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Characterizing functional brain networks via Spatio-Temporal Attention 4D Convolutional Neural Networks (STA-4DCNNs)

人类连接体项目 功能磁共振成像 计算机科学 人工智能 静息状态功能磁共振成像 模式识别(心理学) 连接体 概化理论 卷积神经网络 大脑活动与冥想 功能连接 神经科学 心理学 发展心理学 脑电图
作者
Xi Jiang,Jiadong Yan,Yu Zhao,Mingxin Jiang,Yuzhong Chen,Jingchao Zhou,Zhenxiang Xiao,Zifan Wang,Rong Zhang,Benjamin Becker,Dajiang Zhu,Keith M. Kendrick,Tianming Liu
出处
期刊:Neural Networks [Elsevier]
卷期号:158: 99-110 被引量:23
标识
DOI:10.1016/j.neunet.2022.11.004
摘要

Characterizing individualized spatio-temporal patterns of functional brain networks (FBNs) via functional magnetic resonance imaging (fMRI) provides a foundation for understanding complex brain function. Although previous studies have achieved promising performances based on either shallow or deep learning models, there is still much space to improve the accuracy of spatio-temporal pattern characterization of FBNs by optimally integrating the four-dimensional (4D) features of fMRI. In this study, we introduce a novel Spatio-Temporal Attention 4D Convolutional Neural Network (STA-4DCNN) model to characterize individualized spatio-temporal patterns of FBNs. Particularly, STA-4DCNN is composed of two subnetworks, in which the first Spatial Attention 4D CNN (SA-4DCNN) models the spatio-temporal features of 4D fMRI data and then characterizes the spatial pattern of FBNs, and the second Temporal Guided Attention Network (T-GANet) further characterizes the temporal pattern of FBNs under the guidance of the spatial pattern together with 4D fMRI data. We evaluate the proposed STA-4DCNN on seven different task fMRI and one resting state fMRI datasets from the publicly released Human Connectome Project. The experimental results demonstrate that STA-4DCNN has superior ability and generalizability in characterizing individualized spatio-temporal patterns of FBNs when compared to other state-of-the-art models. We further apply STA-4DCNN on another independent ABIDE I resting state fMRI dataset including both autism spectrum disorder (ASD) and typical developing (TD) subjects, and successfully identify abnormal spatio-temporal patterns of FBNs in ASD compared to TD. In general, STA-4DCNN provides a powerful tool for FBN characterization and for clinical applications on brain disease characterization at the individual level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
4秒前
佳佳发布了新的文献求助10
7秒前
果果完成签到,获得积分20
8秒前
共享精神应助孔踏歌采纳,获得10
9秒前
10秒前
13秒前
Cmqq发布了新的文献求助10
13秒前
吃瓜群众完成签到,获得积分10
13秒前
zhouxunnjau发布了新的文献求助10
19秒前
小江发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助20
27秒前
完美世界应助小江采纳,获得10
36秒前
求学完成签到,获得积分10
37秒前
在水一方应助求学采纳,获得10
48秒前
loser完成签到 ,获得积分10
55秒前
大模型应助Cmqq采纳,获得10
55秒前
清浅完成签到 ,获得积分10
58秒前
zeice完成签到 ,获得积分10
1分钟前
阔达白凡完成签到,获得积分10
1分钟前
1分钟前
美丽的冰枫完成签到,获得积分10
1分钟前
佳佳完成签到,获得积分10
1分钟前
Cmqq发布了新的文献求助10
1分钟前
义气的断秋完成签到,获得积分10
1分钟前
TwentyNine关注了科研通微信公众号
1分钟前
安详的从筠完成签到,获得积分10
1分钟前
田様应助Cmqq采纳,获得10
1分钟前
修水县1个科研人完成签到 ,获得积分10
1分钟前
2分钟前
重庆森林发布了新的文献求助10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
重庆森林完成签到,获得积分10
2分钟前
小榕树完成签到,获得积分10
2分钟前
2分钟前
shuang完成签到 ,获得积分10
2分钟前
2分钟前
Cmqq发布了新的文献求助10
2分钟前
孔踏歌发布了新的文献求助10
2分钟前
所所应助Cmqq采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685513
关于积分的说明 14838543
捐赠科研通 4670625
什么是DOI,文献DOI怎么找? 2538207
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904