人类连接体项目
功能磁共振成像
计算机科学
人工智能
静息状态功能磁共振成像
模式识别(心理学)
连接体
概化理论
卷积神经网络
大脑活动与冥想
功能连接
神经科学
心理学
发展心理学
脑电图
作者
Xi Jiang,Jiadong Yan,Yu Zhao,Mingxin Jiang,Yuzhong Chen,Jingchao Zhou,Zhenxiang Xiao,Zifan Wang,Rong Zhang,Benjamin Becker,Dajiang Zhu,Keith M. Kendrick,Tianming Liu
标识
DOI:10.1016/j.neunet.2022.11.004
摘要
Characterizing individualized spatio-temporal patterns of functional brain networks (FBNs) via functional magnetic resonance imaging (fMRI) provides a foundation for understanding complex brain function. Although previous studies have achieved promising performances based on either shallow or deep learning models, there is still much space to improve the accuracy of spatio-temporal pattern characterization of FBNs by optimally integrating the four-dimensional (4D) features of fMRI. In this study, we introduce a novel Spatio-Temporal Attention 4D Convolutional Neural Network (STA-4DCNN) model to characterize individualized spatio-temporal patterns of FBNs. Particularly, STA-4DCNN is composed of two subnetworks, in which the first Spatial Attention 4D CNN (SA-4DCNN) models the spatio-temporal features of 4D fMRI data and then characterizes the spatial pattern of FBNs, and the second Temporal Guided Attention Network (T-GANet) further characterizes the temporal pattern of FBNs under the guidance of the spatial pattern together with 4D fMRI data. We evaluate the proposed STA-4DCNN on seven different task fMRI and one resting state fMRI datasets from the publicly released Human Connectome Project. The experimental results demonstrate that STA-4DCNN has superior ability and generalizability in characterizing individualized spatio-temporal patterns of FBNs when compared to other state-of-the-art models. We further apply STA-4DCNN on another independent ABIDE I resting state fMRI dataset including both autism spectrum disorder (ASD) and typical developing (TD) subjects, and successfully identify abnormal spatio-temporal patterns of FBNs in ASD compared to TD. In general, STA-4DCNN provides a powerful tool for FBN characterization and for clinical applications on brain disease characterization at the individual level.
科研通智能强力驱动
Strongly Powered by AbleSci AI