Characterizing functional brain networks via Spatio-Temporal Attention 4D Convolutional Neural Networks (STA-4DCNNs)

人类连接体项目 功能磁共振成像 计算机科学 人工智能 静息状态功能磁共振成像 模式识别(心理学) 连接体 概化理论 卷积神经网络 大脑活动与冥想 功能连接 神经科学 心理学 发展心理学 脑电图
作者
Xi Jiang,Jiadong Yan,Yu Zhao,Mingxin Jiang,Yuzhong Chen,Jingchao Zhou,Zhenxiang Xiao,Zifan Wang,Rong Zhang,Benjamin Becker,Dajiang Zhu,Keith M. Kendrick,Tianming Liu
出处
期刊:Neural Networks [Elsevier BV]
卷期号:158: 99-110 被引量:22
标识
DOI:10.1016/j.neunet.2022.11.004
摘要

Characterizing individualized spatio-temporal patterns of functional brain networks (FBNs) via functional magnetic resonance imaging (fMRI) provides a foundation for understanding complex brain function. Although previous studies have achieved promising performances based on either shallow or deep learning models, there is still much space to improve the accuracy of spatio-temporal pattern characterization of FBNs by optimally integrating the four-dimensional (4D) features of fMRI. In this study, we introduce a novel Spatio-Temporal Attention 4D Convolutional Neural Network (STA-4DCNN) model to characterize individualized spatio-temporal patterns of FBNs. Particularly, STA-4DCNN is composed of two subnetworks, in which the first Spatial Attention 4D CNN (SA-4DCNN) models the spatio-temporal features of 4D fMRI data and then characterizes the spatial pattern of FBNs, and the second Temporal Guided Attention Network (T-GANet) further characterizes the temporal pattern of FBNs under the guidance of the spatial pattern together with 4D fMRI data. We evaluate the proposed STA-4DCNN on seven different task fMRI and one resting state fMRI datasets from the publicly released Human Connectome Project. The experimental results demonstrate that STA-4DCNN has superior ability and generalizability in characterizing individualized spatio-temporal patterns of FBNs when compared to other state-of-the-art models. We further apply STA-4DCNN on another independent ABIDE I resting state fMRI dataset including both autism spectrum disorder (ASD) and typical developing (TD) subjects, and successfully identify abnormal spatio-temporal patterns of FBNs in ASD compared to TD. In general, STA-4DCNN provides a powerful tool for FBN characterization and for clinical applications on brain disease characterization at the individual level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Clxzzgzg完成签到,获得积分10
刚刚
Ellie发布了新的文献求助10
1秒前
Yola发布了新的文献求助10
1秒前
1秒前
2秒前
赤练仙子完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
4秒前
棋士发布了新的文献求助10
4秒前
甜蜜的灵凡完成签到,获得积分10
5秒前
SYLH应助坚强的语琴采纳,获得10
5秒前
Jaaay完成签到,获得积分10
5秒前
5秒前
KX完成签到,获得积分20
5秒前
孙绪鹏发布了新的文献求助10
6秒前
宋畅关注了科研通微信公众号
6秒前
9986完成签到,获得积分10
6秒前
kuyng发布了新的文献求助30
7秒前
8秒前
123456发布了新的文献求助10
9秒前
竹溪发布了新的文献求助10
9秒前
思敏发布了新的文献求助10
10秒前
大头驴发布了新的文献求助10
10秒前
11秒前
tangtang完成签到 ,获得积分10
11秒前
ddd完成签到 ,获得积分10
11秒前
11秒前
bkagyin应助cream采纳,获得10
11秒前
科研小菜狗完成签到 ,获得积分10
11秒前
ww完成签到,获得积分10
11秒前
12秒前
12秒前
ll200207完成签到,获得积分10
13秒前
wyc发布了新的文献求助10
14秒前
czc发布了新的文献求助10
14秒前
MMMMMAX完成签到,获得积分10
14秒前
澜生完成签到,获得积分10
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954042
求助须知:如何正确求助?哪些是违规求助? 3500003
关于积分的说明 11097832
捐赠科研通 3230521
什么是DOI,文献DOI怎么找? 1785972
邀请新用户注册赠送积分活动 869759
科研通“疑难数据库(出版商)”最低求助积分说明 801583