Drug-Induced Acute Kidney Injury Risk Prediction Models

医学 急性肾损伤 病因学 重症监护医学 内科学 特征选择 机器学习 计算机科学
作者
Zaid M.A. Yousif,Linda Awdishu
出处
期刊:Nephron Clinical Practice 卷期号:147 (1): 44-47
标识
DOI:10.1159/000526267
摘要

<b><i>Background:</i></b> Acute kidney injury (AKI) risk prediction models can predict AKI with short lead times and excellent model performance. However, these prediction models have not ascertained the etiology of the AKI. Drugs are an important contributor to AKI, and it is difficult to distinguish drug causes from other etiologies. <b><i>Summary:</i></b> Clinical adjudication of AKI etiology can reduce misclassification associated with temporal relationships, since expert adjudicators are trained to assess an outcome in a consistent manner using standardized definitions. Drug-induced acute kidney injury (DI-AKI) varies by drug and is heterogeneous in onset and mechanisms, limiting a universal approach to risk prediction and necessitating expert review. DI-AKI models should be constructed using a high-quality prospective dataset to maximize model performance, internal and external validity. Predictor selection and engineering requires careful attention to unique issues arising from interactions such as drug dose and concentrations. Various statistical methods, such as least absolute shrinkage and selection operator regression or advanced machine learning techniques, may be applied to perform feature selection and capture trends and interactions between predictors. Finally, the model should be carefully evaluated by internal and external validation. <b><i>Key Messages:</i></b> The development of DI-AKI risk prediction models is needed to identify high-risk patients, identify new risk factors, formulate, and apply preventative strategies. DI-AKI risk prediction models require a well-defined dataset of clinically adjudicated cases to improve model performance, validity, and reduce the risk of misclassification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠班完成签到,获得积分10
刚刚
刚刚
多发paper啊完成签到,获得积分10
1秒前
阿宁完成签到 ,获得积分10
1秒前
谦让寻凝完成签到 ,获得积分10
1秒前
1秒前
阳光的梦寒完成签到 ,获得积分10
2秒前
Chency完成签到,获得积分10
2秒前
科研民工发布了新的文献求助10
2秒前
陈佳年完成签到 ,获得积分10
2秒前
2秒前
会游泳的猪完成签到,获得积分10
3秒前
所所应助奋斗的菀采纳,获得10
3秒前
autism发布了新的文献求助10
3秒前
吃零食吃不下饭完成签到,获得积分10
4秒前
1234567完成签到,获得积分10
4秒前
可爱的函函应助雨点采纳,获得20
5秒前
tan90完成签到,获得积分10
5秒前
li完成签到,获得积分10
5秒前
徐慕源完成签到,获得积分10
5秒前
街角哭泣发布了新的文献求助10
5秒前
6秒前
威哥完成签到,获得积分10
6秒前
KY Mr.WANG完成签到,获得积分10
7秒前
hebilie完成签到,获得积分10
7秒前
8秒前
nanonamo完成签到,获得积分10
8秒前
多摩川的烟花少年完成签到,获得积分10
9秒前
9秒前
Jasper应助莫等闲采纳,获得10
10秒前
aa完成签到,获得积分10
10秒前
10秒前
HC完成签到,获得积分10
11秒前
落后的山水完成签到,获得积分10
11秒前
上官若男应助xuanxiu007采纳,获得10
12秒前
啊凡完成签到 ,获得积分10
12秒前
12秒前
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167375
求助须知:如何正确求助?哪些是违规求助? 2818893
关于积分的说明 7923236
捐赠科研通 2478710
什么是DOI,文献DOI怎么找? 1320438
科研通“疑难数据库(出版商)”最低求助积分说明 632803
版权声明 602443