Road damage detection algorithm for improved YOLOv5

计算机科学 一般化 聚类分析 算法 失败 平滑的 任务(项目管理) 体积热力学 特征(语言学) 帧(网络) k均值聚类 人工智能 数据挖掘 计算机视觉 数学 哲学 管理 并行计算 经济 语言学 数学分析 物理 电信 量子力学
作者
Gege Guo,Zhenyu Zhang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:98
标识
DOI:10.1038/s41598-022-19674-8
摘要

Abstract Road damage detection is an important task to ensure road safety and realize the timely repair of road damage. The previous manual detection methods are low in efficiency and high in cost. To solve this problem, an improved YOLOv5 road damage detection algorithm, MN-YOLOv5, was proposed. We optimized the YOLOv5s model and chose a new backbone feature extraction network MobileNetV3 to replace the basic network of YOLOv5, which greatly reduced the number of parameters and GFLOPs of the model, and reduced the size of the model. At the same time, the coordinate attention lightweight attention module is introduced to help the network locate the target more accurately and improve the target detection accuracy. The KMeans clustering algorithm is used to filter the prior frame to make it more suitable for the dataset and to improve the detection accuracy. To improve the generalization ability of the model, a label smoothing algorithm is introduced. In addition, the structure reparameterization method is used to accelerate model reasoning. The experimental results show that the improved YOLOv5 model proposed in this paper can effectively identify pavement cracks. Compared with the original model, the mAP increased by 2.5%, the F1 score increased by 2.6%, and the model volume was smaller than that of YOLOv5. 1.62 times, the parameter was reduced by 1.66 times, and the GFLOPs were reduced by 1.69 times. This method can provide a reference for the automatic detection method of pavement cracks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加油发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
JPH1990应助Ambition采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
3秒前
3秒前
916应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
科研通AI5应助大胆吐司采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
wkjfh应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
wyw完成签到,获得积分10
5秒前
星辰大海应助科研通管家采纳,获得30
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得20
5秒前
wpeng326完成签到,获得积分20
5秒前
大模型应助科研通管家采纳,获得10
5秒前
子车茗应助科研通管家采纳,获得20
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
残幻应助科研通管家采纳,获得10
5秒前
残幻应助科研通管家采纳,获得10
6秒前
残幻应助科研通管家采纳,获得10
6秒前
残幻应助科研通管家采纳,获得10
6秒前
残幻应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得50
7秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741065
求助须知:如何正确求助?哪些是违规求助? 3283833
关于积分的说明 10037107
捐赠科研通 3000659
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427