Intrusion detection system using hybrid classifiers with meta-heuristic algorithms for the optimization and feature selection by genetic algorithm

元启发式 算法 特征选择 启发式 遗传算法 选择(遗传算法) 入侵检测系统 计算机科学 优化算法 特征(语言学) 人工智能 模式识别(心理学) 机器学习 数学 数学优化 语言学 哲学
作者
Nilesh Kunhare,Ritu Tiwari,Joydip Dhar
出处
期刊:Computers & Electrical Engineering [Elsevier BV]
卷期号:103: 108383-108383 被引量:15
标识
DOI:10.1016/j.compeleceng.2022.108383
摘要

An intrusion detection system (IDS) is considered critical for detecting threats, intrusions, and unauthorized access. IDS monitors massive network traffic that includes irrelevant and extravagant features that profoundly impact the system’s efficiency and slow down the classification process for accurate decisions. Its effectiveness is tested over the various techniques that comprise an enormous volume of data and heavy network traffic. Many approaches, such as machine learning algorithms , data mining , swarm intelligence , and artificial neural networks (ANN), have been implemented for adequate and improved IDSs. This paper recommends a novel feature selection method using a genetic algorithm (GA) that determines the optimal feature subsets from the NSL-KDD dataset. Further, hybrid classification has been performed using logistic regression (LR) and decision tree (DT) to achieve a better detection rate (DR) and accuracy (ACC). This research applied and compared several meta-heuristic algorithms’ performance to optimize the selected optimal features. The experimental results show that the grey wolf optimization (GWO) algorithm gives the best accuracy of 99.44% and DR of 99.36% with the reduction of features (=20) out of (=41). The results of the proposed work are compared with the existing feature selection methods to verify improved performance. • Novel feature selection method using a genetic algorithm (GA) that determines the optimal feature subsets. • Hybrid classification to achieve a better detection rate (DR) and accuracy (ACC). • Compared several meta-heuristic algorithms’ performance to optimize the selected optimal features. • The grey wolf optimization (GWO) algorithm gives the best accuracy of 99.44% and DR of 99.36% with the reduction of features (=20) out of (=41). • Optimization for improvement of IDS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慌张发布了新的文献求助10
1秒前
lily完成签到,获得积分10
1秒前
归尘发布了新的文献求助10
2秒前
2秒前
qwer发布了新的文献求助10
2秒前
薛人英发布了新的文献求助10
2秒前
Lucas应助fighting采纳,获得10
3秒前
鹿茸与共发布了新的文献求助10
3秒前
3秒前
lihui完成签到,获得积分10
3秒前
杜嘟嘟完成签到,获得积分10
3秒前
李健的小迷弟应助芝麻采纳,获得10
3秒前
小铃铛完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
Hh完成签到,获得积分20
5秒前
健壮银耳汤完成签到,获得积分10
6秒前
西瓜完成签到,获得积分10
7秒前
董阳完成签到,获得积分10
7秒前
打工羊发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
wyw发布了新的文献求助10
8秒前
在水一方应助小心采纳,获得10
8秒前
9秒前
9秒前
9秒前
10秒前
星辰大海应助小林不熬夜采纳,获得10
11秒前
18062677029完成签到 ,获得积分10
11秒前
赵飞燕发布了新的文献求助10
12秒前
12秒前
搜集达人应助JC采纳,获得10
12秒前
12秒前
科研通AI2S应助苗条的柏柳采纳,获得10
13秒前
来日可期完成签到,获得积分10
13秒前
源缘完成签到 ,获得积分10
13秒前
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748001
求助须知:如何正确求助?哪些是违规求助? 3290872
关于积分的说明 10071468
捐赠科研通 3006743
什么是DOI,文献DOI怎么找? 1651295
邀请新用户注册赠送积分活动 786287
科研通“疑难数据库(出版商)”最低求助积分说明 751636