Intrusion detection system using hybrid classifiers with meta-heuristic algorithms for the optimization and feature selection by genetic algorithm

元启发式 算法 特征选择 启发式 遗传算法 选择(遗传算法) 入侵检测系统 计算机科学 优化算法 特征(语言学) 人工智能 模式识别(心理学) 机器学习 数学 数学优化 语言学 哲学
作者
Nilesh Kunhare,Ritu Tiwari,Joydip Dhar
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:103: 108383-108383 被引量:15
标识
DOI:10.1016/j.compeleceng.2022.108383
摘要

An intrusion detection system (IDS) is considered critical for detecting threats, intrusions, and unauthorized access. IDS monitors massive network traffic that includes irrelevant and extravagant features that profoundly impact the system’s efficiency and slow down the classification process for accurate decisions. Its effectiveness is tested over the various techniques that comprise an enormous volume of data and heavy network traffic. Many approaches, such as machine learning algorithms , data mining , swarm intelligence , and artificial neural networks (ANN), have been implemented for adequate and improved IDSs. This paper recommends a novel feature selection method using a genetic algorithm (GA) that determines the optimal feature subsets from the NSL-KDD dataset. Further, hybrid classification has been performed using logistic regression (LR) and decision tree (DT) to achieve a better detection rate (DR) and accuracy (ACC). This research applied and compared several meta-heuristic algorithms’ performance to optimize the selected optimal features. The experimental results show that the grey wolf optimization (GWO) algorithm gives the best accuracy of 99.44% and DR of 99.36% with the reduction of features (=20) out of (=41). The results of the proposed work are compared with the existing feature selection methods to verify improved performance. • Novel feature selection method using a genetic algorithm (GA) that determines the optimal feature subsets. • Hybrid classification to achieve a better detection rate (DR) and accuracy (ACC). • Compared several meta-heuristic algorithms’ performance to optimize the selected optimal features. • The grey wolf optimization (GWO) algorithm gives the best accuracy of 99.44% and DR of 99.36% with the reduction of features (=20) out of (=41). • Optimization for improvement of IDS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
搜集达人应助小雨转晴采纳,获得10
2秒前
4秒前
司徒雨木完成签到,获得积分10
4秒前
SCR发布了新的文献求助10
4秒前
4秒前
newgeno2003发布了新的文献求助30
5秒前
英俊的铭应助sun采纳,获得10
5秒前
cyndi发布了新的文献求助10
5秒前
5秒前
幸运兔完成签到,获得积分20
6秒前
chenhuan发布了新的文献求助10
6秒前
共享精神应助cindy采纳,获得10
6秒前
zqq123完成签到,获得积分10
6秒前
饱满的纹完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
applennad完成签到,获得积分10
7秒前
7秒前
桐桐应助空空采纳,获得10
10秒前
10秒前
华北走地鸡完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
昼夜本色发布了新的文献求助10
11秒前
LG关闭了LG文献求助
11秒前
11秒前
风趣的涵柏完成签到,获得积分10
12秒前
xielixin2001完成签到,获得积分10
12秒前
魔幻若血发布了新的文献求助10
13秒前
13秒前
橘络完成签到,获得积分10
14秒前
14秒前
劉浏琉应助curlycai采纳,获得10
15秒前
sys549发布了新的文献求助10
16秒前
16秒前
16秒前
古木完成签到,获得积分20
17秒前
shim完成签到,获得积分10
17秒前
解文哲完成签到,获得积分10
17秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749791
求助须知:如何正确求助?哪些是违规求助? 5460821
关于积分的说明 15364689
捐赠科研通 4889191
什么是DOI,文献DOI怎么找? 2628941
邀请新用户注册赠送积分活动 1577210
关于科研通互助平台的介绍 1533876