Intrusion detection system using hybrid classifiers with meta-heuristic algorithms for the optimization and feature selection by genetic algorithm

元启发式 算法 特征选择 启发式 遗传算法 选择(遗传算法) 入侵检测系统 计算机科学 优化算法 特征(语言学) 人工智能 模式识别(心理学) 机器学习 数学 数学优化 语言学 哲学
作者
Nilesh Kunhare,Ritu Tiwari,Joydip Dhar
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:103: 108383-108383 被引量:15
标识
DOI:10.1016/j.compeleceng.2022.108383
摘要

An intrusion detection system (IDS) is considered critical for detecting threats, intrusions, and unauthorized access. IDS monitors massive network traffic that includes irrelevant and extravagant features that profoundly impact the system’s efficiency and slow down the classification process for accurate decisions. Its effectiveness is tested over the various techniques that comprise an enormous volume of data and heavy network traffic. Many approaches, such as machine learning algorithms , data mining , swarm intelligence , and artificial neural networks (ANN), have been implemented for adequate and improved IDSs. This paper recommends a novel feature selection method using a genetic algorithm (GA) that determines the optimal feature subsets from the NSL-KDD dataset. Further, hybrid classification has been performed using logistic regression (LR) and decision tree (DT) to achieve a better detection rate (DR) and accuracy (ACC). This research applied and compared several meta-heuristic algorithms’ performance to optimize the selected optimal features. The experimental results show that the grey wolf optimization (GWO) algorithm gives the best accuracy of 99.44% and DR of 99.36% with the reduction of features (=20) out of (=41). The results of the proposed work are compared with the existing feature selection methods to verify improved performance. • Novel feature selection method using a genetic algorithm (GA) that determines the optimal feature subsets. • Hybrid classification to achieve a better detection rate (DR) and accuracy (ACC). • Compared several meta-heuristic algorithms’ performance to optimize the selected optimal features. • The grey wolf optimization (GWO) algorithm gives the best accuracy of 99.44% and DR of 99.36% with the reduction of features (=20) out of (=41). • Optimization for improvement of IDS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
互助遵法尚德完成签到,获得积分0
3秒前
调皮时光发布了新的文献求助10
3秒前
香蕉觅云应助高高问柳采纳,获得30
4秒前
yah发布了新的文献求助10
5秒前
xiong发布了新的文献求助10
6秒前
嘉心糖应助yk采纳,获得30
8秒前
赘婿应助缥缈傲南采纳,获得10
8秒前
嗒嗒嗒薇完成签到 ,获得积分10
8秒前
9秒前
喝酸奶不舔盖完成签到 ,获得积分10
10秒前
重要的小刘完成签到,获得积分10
10秒前
tianshicanyi发布了新的文献求助10
11秒前
Que发布了新的文献求助10
13秒前
13秒前
yah完成签到,获得积分10
14秒前
guoguo完成签到 ,获得积分10
16秒前
16秒前
高高问柳发布了新的文献求助30
16秒前
runtang完成签到,获得积分10
18秒前
小马甲应助三三四采纳,获得10
19秒前
完美世界应助Damy采纳,获得10
20秒前
sidegate完成签到,获得积分10
20秒前
21秒前
如履平川完成签到 ,获得积分10
23秒前
Natua完成签到,获得积分10
23秒前
平淡的山芙完成签到 ,获得积分10
24秒前
上官若男应助小仙女采纳,获得10
25秒前
tengfy发布了新的文献求助20
26秒前
没事哒发布了新的文献求助10
26秒前
28秒前
HEIKU应助旺旺采纳,获得10
29秒前
29秒前
Qing完成签到,获得积分10
30秒前
30秒前
lyy完成签到 ,获得积分10
30秒前
jyhk完成签到,获得积分10
30秒前
李健应助苹果小八采纳,获得10
31秒前
平淡的山芙关注了科研通微信公众号
31秒前
32秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168356
求助须知:如何正确求助?哪些是违规求助? 2819704
关于积分的说明 7927634
捐赠科研通 2479614
什么是DOI,文献DOI怎么找? 1321024
科研通“疑难数据库(出版商)”最低求助积分说明 632946
版权声明 602460