Intrusion detection system using hybrid classifiers with meta-heuristic algorithms for the optimization and feature selection by genetic algorithm

元启发式 算法 特征选择 启发式 遗传算法 选择(遗传算法) 入侵检测系统 计算机科学 优化算法 特征(语言学) 人工智能 模式识别(心理学) 机器学习 数学 数学优化 语言学 哲学
作者
Nilesh Kunhare,Ritu Tiwari,Joydip Dhar
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:103: 108383-108383 被引量:15
标识
DOI:10.1016/j.compeleceng.2022.108383
摘要

An intrusion detection system (IDS) is considered critical for detecting threats, intrusions, and unauthorized access. IDS monitors massive network traffic that includes irrelevant and extravagant features that profoundly impact the system’s efficiency and slow down the classification process for accurate decisions. Its effectiveness is tested over the various techniques that comprise an enormous volume of data and heavy network traffic. Many approaches, such as machine learning algorithms , data mining , swarm intelligence , and artificial neural networks (ANN), have been implemented for adequate and improved IDSs. This paper recommends a novel feature selection method using a genetic algorithm (GA) that determines the optimal feature subsets from the NSL-KDD dataset. Further, hybrid classification has been performed using logistic regression (LR) and decision tree (DT) to achieve a better detection rate (DR) and accuracy (ACC). This research applied and compared several meta-heuristic algorithms’ performance to optimize the selected optimal features. The experimental results show that the grey wolf optimization (GWO) algorithm gives the best accuracy of 99.44% and DR of 99.36% with the reduction of features (=20) out of (=41). The results of the proposed work are compared with the existing feature selection methods to verify improved performance. • Novel feature selection method using a genetic algorithm (GA) that determines the optimal feature subsets. • Hybrid classification to achieve a better detection rate (DR) and accuracy (ACC). • Compared several meta-heuristic algorithms’ performance to optimize the selected optimal features. • The grey wolf optimization (GWO) algorithm gives the best accuracy of 99.44% and DR of 99.36% with the reduction of features (=20) out of (=41). • Optimization for improvement of IDS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助vv1223采纳,获得20
1秒前
SciGPT应助不舍天真采纳,获得10
1秒前
1秒前
2秒前
LZCCC完成签到,获得积分10
2秒前
fvsuar完成签到,获得积分10
2秒前
大聪明发布了新的文献求助10
2秒前
Eins完成签到 ,获得积分10
2秒前
丢丢在吗发布了新的文献求助10
2秒前
佳佳发布了新的文献求助10
2秒前
su发布了新的文献求助10
2秒前
见雨鱼完成签到 ,获得积分10
2秒前
2秒前
狗熊发布了新的文献求助10
3秒前
3秒前
打打应助追寻的问玉采纳,获得10
3秒前
a'mao'men完成签到,获得积分10
3秒前
嘟嘟发布了新的文献求助10
3秒前
思源应助PaoPao采纳,获得10
3秒前
王旭发布了新的文献求助10
4秒前
小迷糊完成签到 ,获得积分10
4秒前
4秒前
Simone发布了新的文献求助10
4秒前
昌怜烟完成签到,获得积分10
5秒前
5秒前
呢n完成签到 ,获得积分10
5秒前
6秒前
miawei完成签到,获得积分10
6秒前
生活散文发布了新的文献求助10
6秒前
VV发布了新的文献求助10
6秒前
Hoiden完成签到,获得积分10
6秒前
you完成签到,获得积分10
7秒前
liuyong完成签到,获得积分10
7秒前
海之恋心完成签到 ,获得积分10
7秒前
东邪西毒加任我行完成签到,获得积分10
7秒前
丢丢在吗完成签到,获得积分10
8秒前
8秒前
内向的隶完成签到,获得积分20
8秒前
zuozuo完成签到,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977