Efficient and enhanced sampling of drug‐like chemical space for virtual screening and molecular design using modern machine learning methods

化学信息学 化学空间 虚拟筛选 计算机科学 空格(标点符号) 采样(信号处理) 集合(抽象数据类型) 过程(计算) 机器学习 人工智能 药物发现 数据科学 化学 生物信息学 程序设计语言 计算化学 生物 计算机视觉 操作系统 滤波器(信号处理)
作者
Manan Goel,Rishal Aggarwal,Bhuvanesh Sridharan,Pradeep Kumar Pal,U. Deva Priyakumar
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:13 (2) 被引量:13
标识
DOI:10.1002/wcms.1637
摘要

Abstract Drug design involves the process of identifying and designing novel molecules that have desirable properties and bind well to a given target receptor. Typically, such molecules are identified by screening large chemical libraries for desirable physicochemical properties and binding strength with the target protein. This traditional approach, however, has severe limitations as exhaustively screening every molecule in known chemical libraries is computationally infeasible. Furthermore, currently available molecular libraries are only a minuscule part of the entire set of possible drug‐like molecular structures (drug‐like chemical space). In this review, we discuss how the former limitation is addressed by modeling virtual screening as a search space problem and how these endeavors utilize machine learning to reduce the number of required computational experiments to identify top candidates. We follow that up by discussing generative methods that attempt to approximate the entire drug‐like chemical space providing us a path to explore beyond the known drug‐like chemical space. We place special emphasis on generative models that learn the marginal distributions conditioned on specific properties or receptor structures for efficient sampling of molecules. Through this review, we aim to highlight modern machine learning based methods that try to efficiently enhance our sampling capability beyond conventional screening methods which, in turn, would benefit drug design significantly. Therefore, we also encourage further methods of development that work on such important aspects of drug design. This article is categorized under: Data Science > Chemoinformatics Data Science > Artificial Intelligence/Machine Learning Data Science > Computer Algorithms and Programming
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯哼哈哈发布了新的文献求助10
刚刚
季不住完成签到,获得积分10
刚刚
大雄的梦想是什么完成签到 ,获得积分10
1秒前
独特翠丝完成签到,获得积分20
1秒前
LX完成签到,获得积分10
2秒前
一颗小行星完成签到 ,获得积分10
2秒前
腿毛没啦完成签到,获得积分10
3秒前
积极上进的小润完成签到,获得积分10
4秒前
King16发布了新的文献求助10
4秒前
氨基酸脱氨完成签到,获得积分10
4秒前
8秒前
9秒前
10秒前
HalfGumps完成签到,获得积分10
10秒前
nicelily完成签到 ,获得积分20
10秒前
魔叶树完成签到 ,获得积分10
12秒前
妙bu可yan完成签到,获得积分10
12秒前
qianmo完成签到 ,获得积分10
12秒前
善学以致用应助xyy102采纳,获得10
13秒前
King16完成签到,获得积分10
13秒前
邢文瑞发布了新的文献求助50
14秒前
啦啦啦啦德玛西亚完成签到,获得积分10
14秒前
呆萌寻琴完成签到,获得积分10
14秒前
Ye发布了新的文献求助10
16秒前
嗯哼哈哈完成签到 ,获得积分10
17秒前
问心发布了新的文献求助10
18秒前
liii完成签到 ,获得积分10
18秒前
19秒前
小小瑾完成签到,获得积分10
22秒前
25秒前
wangayting发布了新的文献求助30
25秒前
谷鸿飞发布了新的文献求助20
26秒前
26秒前
大气的山彤完成签到,获得积分10
27秒前
深情安青应助小小瑾采纳,获得10
28秒前
华仔应助Yara.H采纳,获得10
29秒前
易姜发布了新的文献求助20
30秒前
科研小能手完成签到,获得积分10
30秒前
31秒前
yangyangyang完成签到,获得积分10
32秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139849
求助须知:如何正确求助?哪些是违规求助? 2790719
关于积分的说明 7796422
捐赠科研通 2447131
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601185