Gradient electro-processing strategy for efficient conversion of harmful algal blooms to biohythane with mechanisms insight

水华 环境科学 生物量(生态学) 环境工程 生化工程 化学 制浆造纸工业 生态学 营养物 生物 浮游植物 工程类
作者
Haixing Chang,Haihua Wu,Lei Zhang,Wenbo Wu,Chaofan Zhang,Nianbing Zhong,Dengjie Zhong,Yunlan Xu,Xuefeng He,Jing Yang,Yue Zhang,Ting Zhang,Qiang Liu,Shih-Hsin Ho
出处
期刊:Water Research [Elsevier]
卷期号:222: 118929-118929 被引量:17
标识
DOI:10.1016/j.watres.2022.118929
摘要

Globally eruptive harmful algal blooms (HABs) have caused numerous negative effects on aquatic ecosystem and human health. Conversion of HABs into biohythane via dark fermentation (DF) is a promising approach to simultaneously cope with environmental and energy issues, but low HABs harvesting efficiency and biohythane productivity severely hinder its application. Here we designed a gradient electro-processing strategy for efficient HABs harvesting and disruption, which had intrinsic advantages of no secondary pollution and high economic feasibility. Firstly, low current density (0.888-4.444 mA/cm2) was supplied to HABs suspension to harvest biomass via electro-flocculation, which achieved 98.59% harvesting efficiency. A mathematic model considering coupling effects of multi-influencing factors on HABs harvesting was constructed to guide large-scale application. Then, the harvested HABs biomass was disrupted via electro-oxidation under higher current density (44.44 mA/cm2) to improve bioavailability for DF. As results, hydrogen and methane yields of 64.46 mL/ (g VS) and 171.82 mL/(g VS) were obtained under 6 min electro-oxidation, along with the highest energy yield (50.1 kJ/L) and energy conversion efficiency (44.87%). Mechanisms of HABs harvesting and disruption under gradient electro-processing were revealed, along with the conversion pathways from HABs to biohythane. Together, this work provides a promising strategy for efficient disposal of HABs with extra benefit of biohythane production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助PKU_夏日晴采纳,获得10
刚刚
Akim应助shendu采纳,获得10
1秒前
evvj完成签到 ,获得积分10
1秒前
2秒前
4秒前
7秒前
FG发布了新的文献求助10
7秒前
everglow完成签到,获得积分10
8秒前
ys发布了新的文献求助10
9秒前
9秒前
丘比特应助皮听南采纳,获得10
11秒前
雪碧没气完成签到,获得积分10
11秒前
酷酷的锁发布了新的文献求助10
13秒前
科研CY完成签到 ,获得积分10
14秒前
14秒前
kk完成签到 ,获得积分10
16秒前
刘一完成签到 ,获得积分10
16秒前
南博万完成签到 ,获得积分10
16秒前
HM发布了新的文献求助10
16秒前
善学以致用应助tesla采纳,获得10
17秒前
CipherSage应助FG采纳,获得10
17秒前
fafafa发布了新的文献求助10
17秒前
zho发布了新的文献求助10
18秒前
CYH完成签到,获得积分10
18秒前
科研通AI2S应助韦老虎采纳,获得30
19秒前
21秒前
南博万关注了科研通微信公众号
22秒前
23秒前
子民完成签到,获得积分10
23秒前
Rochester完成签到,获得积分10
23秒前
25秒前
我是老大应助tesla采纳,获得10
25秒前
LL完成签到 ,获得积分10
27秒前
28秒前
28秒前
夜曲完成签到,获得积分20
30秒前
隐形曼青应助无语的百招采纳,获得10
33秒前
Cutewm发布了新的文献求助10
33秒前
34秒前
香蕉觅云应助Eoxu采纳,获得10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557510
求助须知:如何正确求助?哪些是违规求助? 3132597
关于积分的说明 9398211
捐赠科研通 2832746
什么是DOI,文献DOI怎么找? 1556996
邀请新用户注册赠送积分活动 727051
科研通“疑难数据库(出版商)”最低求助积分说明 716184