Degradation Mode Knowledge Transfer Method for LFP Batteries

计算机科学 降级(电信) 电池(电) 领域(数学分析) 人工智能 功率(物理) 电信 数学分析 物理 数学 量子力学
作者
Xin Lu,Jing Qiu,Gang Lei,Jianguo Zhu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:9 (1): 1142-1152 被引量:15
标识
DOI:10.1109/tte.2022.3196087
摘要

Lithium-ion (Li-ion) batteries are widely utilized as energy storage units owing to their high energy density and safety. However, when battery degradation occurs, Li-ion batteries deteriorate and become untrustworthy. Accurate diagnosis and identification of the degradation modes (DMs) constitute a critical task for systems employing Li-ion batteries. Current diagnosis methods are usually postanalysis and cannot be directly employed for diagnosing the batteries that are in operation. This study proposes a ResNet-50-based diagnosis model for DMs, which can quantify the contribution of three DMs for the synthetic datasets. Because the real and synthetic datasets are independent and identically distributed, it is difficult to apply this model to the real datasets. To bridge the gap, this article proposes a deep domain adaptation method to minimize the classification loss and domain adaptation loss between the source domain (synthetic) and the target domain (real), such that the degradation knowledge learned from the synthetic batteries can be transferred to the real batteries. The model's input, structure, and parameters are optimized through simulation tests to improve the diagnosis accuracy. A validation session is designed to verify the classification accuracy of unlabeled DMs of the lithium iron phosphate (LFP) battery. The results show that the proposed method can effectively transfer the knowledge of degradations from synthetic batteries to real-world LFP batteries to diagnose and identify DMs of LFP batteries with relatively high classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Erich完成签到 ,获得积分10
2秒前
3秒前
冷傲的自行车完成签到,获得积分20
3秒前
雪山飞龙发布了新的文献求助30
4秒前
4秒前
千幻发布了新的文献求助10
4秒前
cdercder应助whr采纳,获得10
4秒前
Jasper应助微笑的冰枫采纳,获得10
4秒前
5秒前
6秒前
英俊的铭应助灵泉采纳,获得30
6秒前
6秒前
科研通AI5应助哄哄哈嘿采纳,获得10
6秒前
7秒前
坚强的蚂蚁完成签到,获得积分10
8秒前
舒心钧完成签到 ,获得积分10
8秒前
南桑发布了新的文献求助10
9秒前
tttt完成签到 ,获得积分10
9秒前
山山完成签到,获得积分10
10秒前
小十一完成签到 ,获得积分10
10秒前
whr发布了新的文献求助10
11秒前
Nydia发布了新的文献求助10
12秒前
HYT发布了新的文献求助10
12秒前
sanch发布了新的文献求助10
13秒前
13秒前
SciGPT应助yff采纳,获得10
13秒前
14秒前
雄杨完成签到,获得积分10
15秒前
科研通AI5应助许诺采纳,获得10
15秒前
机智采枫完成签到 ,获得积分10
15秒前
16秒前
16秒前
共享精神应助南桑采纳,获得10
17秒前
谦让谷槐发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
英俊的铭应助qyxqyx采纳,获得10
20秒前
21秒前
orixero应助不许冒饭采纳,获得10
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728189
求助须知:如何正确求助?哪些是违规求助? 3273312
关于积分的说明 9981043
捐赠科研通 2988689
什么是DOI,文献DOI怎么找? 1639744
邀请新用户注册赠送积分活动 778973
科研通“疑难数据库(出版商)”最低求助积分说明 747838