化学
微塑料
吸附
硫黄
环境化学
吸附
Mercury(编程语言)
硫化物
污染物
无机化学
有机化学
计算机科学
程序设计语言
作者
Ye Qiu,Zhanhua Zhang,Tong Zhang,Ping Zhang
标识
DOI:10.1016/j.scitotenv.2022.157802
摘要
Microplastics (MPs) tend to accumulate and undergo a sulfur weathering process that leads to significant surface changes in sulfur-rich anaerobic environments, such as sewage and wastewater treatment plants. Aged MPs can have a profound impact on environmental behaviors of various toxic pollutants, especially heavy metals. Although previous studies have investigated the adsorption characteristics of metal ions on MPs that are aged in aerobic environments, the sorptive interactions of sulfur-aged MPs in anaerobic environments with mercury, i.e., Hg(II), are largely unknown. In this study, laboratory investigations were conducted to study the sorptive behaviors of Hg(II) by six common MPs treated anaerobically in the presence of sulfide. Adsorption isotherms show that the sulfur aging process greatly enhances the MP sorption capacity of Hg(II). The mechanisms including changes in the specific surface area, electrostatic interactions, surface precipitation, and surface functional groups are responsible for the enhanced adsorption capacities of sulfur-aged MPs. The thiol group that forms on the MP surface plays a dominant role in enhancing the MP adsorption capacity of Hg(II), which is determined by the formation of unsaturated bonds in the molecular chains of MPs. Furthermore, the pathways of surface chemical transformation of MPs during sulfur aging have been proposed. This study promotes our understanding of the potential hazard of MPs as well as the fate and transport of heavy metals in the presence of aged MPs.
科研通智能强力驱动
Strongly Powered by AbleSci AI