GBPNet

杠杆(统计) 瓶颈 几何网络 人工智能 理论计算机科学 计算机科学 实体造型 深度学习 代表(政治) 特征学习 等变映射 机器学习 复杂网络 数学 嵌入式系统 万维网 政治学 政治 法学 纯数学
作者
Sarp Aykent,Tian Xia
标识
DOI:10.1145/3534678.3539441
摘要

Representation learning of protein 3D structures is challenging and essential for applications, e.g., computational protein design or protein engineering. Recently, geometric deep learning has achieved great success in non-Euclidean domains. Although protein can be represented as a graph naturally, it remains under-explored mainly due to the significant challenges in modeling the complex representations and capturing the inherent correlation in the 3D structure modeling. Several challenges include: 1) It is challenging to extract and preserve multi-level rotation and translation equivariant information during learning. 2) Difficulty in developing appropriate tools to effectively leverage the input spatial representations to capture complex geometries across the spatial dimension. 3) Difficulty in incorporating various geometric features and preserving the inherent structural relations. In this work, we introduce geometric bottleneck perceptron, and a general SO(3)-equivariant message passing neural network built on top of it for protein structure representation learning. The proposed geometric bottleneck perceptron can be incorporated into diverse network architecture backbones to process geometric data in different domains. This research shed new light on geometric deep learning in 3D structure studies. Empirically, we demonstrate the strength of our proposed approach on three core downstream tasks, where our model achieves significant improvements and outperforms existing benchmarks. The implementation is available at https://github.com/sarpaykent/GBPNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SheltonYang发布了新的文献求助30
刚刚
wanci应助Bagel采纳,获得10
1秒前
希望天下0贩的0应助萧萧采纳,获得10
2秒前
善学以致用应助沫沫采纳,获得10
3秒前
义气访曼完成签到 ,获得积分10
3秒前
AdventureChen完成签到 ,获得积分10
3秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
共享精神应助hxj采纳,获得10
7秒前
weijie发布了新的文献求助10
8秒前
8秒前
壮观大炮发布了新的文献求助10
8秒前
梦在彼岸完成签到,获得积分10
9秒前
9秒前
9秒前
阔达忆秋发布了新的文献求助10
9秒前
学无止境完成签到 ,获得积分10
10秒前
11秒前
君儿和闪电完成签到 ,获得积分10
12秒前
大个应助帽子戏法采纳,获得10
12秒前
fafafa完成签到,获得积分10
12秒前
13秒前
13秒前
fengqing完成签到,获得积分10
13秒前
14秒前
14秒前
德芙发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
www关闭了www文献求助
16秒前
16秒前
11发布了新的文献求助10
17秒前
Mo_Hog发布了新的文献求助10
17秒前
17秒前
17秒前
鑫鑫完成签到,获得积分10
19秒前
fafafa发布了新的文献求助10
19秒前
幸运光环发布了新的文献求助10
19秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713487
求助须知:如何正确求助?哪些是违规求助? 5215699
关于积分的说明 15270963
捐赠科研通 4865238
什么是DOI,文献DOI怎么找? 2611937
邀请新用户注册赠送积分活动 1562134
关于科研通互助平台的介绍 1519378