GBPNet

杠杆(统计) 瓶颈 几何网络 人工智能 理论计算机科学 计算机科学 实体造型 深度学习 代表(政治) 特征学习 等变映射 机器学习 复杂网络 数学 嵌入式系统 万维网 政治学 政治 法学 纯数学
作者
Sarp Aykent,Tian Xia
标识
DOI:10.1145/3534678.3539441
摘要

Representation learning of protein 3D structures is challenging and essential for applications, e.g., computational protein design or protein engineering. Recently, geometric deep learning has achieved great success in non-Euclidean domains. Although protein can be represented as a graph naturally, it remains under-explored mainly due to the significant challenges in modeling the complex representations and capturing the inherent correlation in the 3D structure modeling. Several challenges include: 1) It is challenging to extract and preserve multi-level rotation and translation equivariant information during learning. 2) Difficulty in developing appropriate tools to effectively leverage the input spatial representations to capture complex geometries across the spatial dimension. 3) Difficulty in incorporating various geometric features and preserving the inherent structural relations. In this work, we introduce geometric bottleneck perceptron, and a general SO(3)-equivariant message passing neural network built on top of it for protein structure representation learning. The proposed geometric bottleneck perceptron can be incorporated into diverse network architecture backbones to process geometric data in different domains. This research shed new light on geometric deep learning in 3D structure studies. Empirically, we demonstrate the strength of our proposed approach on three core downstream tasks, where our model achieves significant improvements and outperforms existing benchmarks. The implementation is available at https://github.com/sarpaykent/GBPNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
晴天完成签到,获得积分10
2秒前
坦率无剑完成签到,获得积分10
2秒前
3秒前
4秒前
HuangYu关注了科研通微信公众号
5秒前
firefly完成签到 ,获得积分10
5秒前
gjx完成签到 ,获得积分10
5秒前
yangshuai发布了新的文献求助10
7秒前
晴天发布了新的文献求助10
8秒前
carbonhan完成签到,获得积分10
10秒前
无极微光应助eden采纳,获得20
12秒前
KKK完成签到,获得积分20
12秒前
ming完成签到,获得积分10
13秒前
pluto应助科研通管家采纳,获得10
15秒前
15秒前
Lny应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得10
15秒前
15秒前
pluto应助科研通管家采纳,获得10
15秒前
Lny应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得10
15秒前
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
pluto应助科研通管家采纳,获得10
15秒前
15秒前
pluto应助科研通管家采纳,获得10
15秒前
Criminology34应助科研通管家采纳,获得10
15秒前
Criminology34应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得10
15秒前
15秒前
Lny应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得10
15秒前
15秒前
HOAN应助科研通管家采纳,获得30
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978