A Data Augmentation Boosted Dual Informer Framework for the Performance Degradation Prediction of Aero-Engines

降级(电信) 计算机科学 背景(考古学) 水准点(测量) 数据驱动 过程(计算) 涡扇发动机 可靠性工程 数据建模 可靠性(半导体) 机器学习 人工智能 工程类 汽车工程 电信 古生物学 功率(物理) 物理 大地测量学 量子力学 数据库 生物 地理 操作系统
作者
Zhiyao Zhang,Pengpeng Chen,Chenguang Xing,Bo Liu,Ruo Wang,Longxiao Li,Xiaohong Chen,Enrico Zio
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (11): 12018-12030 被引量:9
标识
DOI:10.1109/jsen.2023.3269030
摘要

The prediction of performance degradation for the aero-engine is crucial to its health management, but the handling of the dynamic spatiotemporal dependence between condition monitoring (CM) data of multiple sensors and the status of performance degradation is nontrivial. Most previous prediction models of performance degradation treat different health stages equally in the training process, although the data in the initial degradation stage are relatively sparse and more important for training a decent prediction model. To bridge this gap, we propose a data-augmentation-boosted dual Informer framework (named DARWIN) for predicting the performance degradation of aero-engines. First, we present a degradation time-series data augmentation model based on Informer to increase the amount of degradation data, making it possible to emphasize the importance of data in the initial degradation stage in the following prediction stage. Second, we design a padding strategy for the run-to-failure (RtF) data so as to preserve the integrity of the degradation context comprehensively. Third, we invoke another Informer model for predicting the performance degradation in which a generative decoder is implemented to get predictions in one forward process instead of the recursive manner for fast computation speed and avoid error accumulation. On the benchmark C-MAPSS datasets, DARWIN yields a 27% accuracy improvement compared with the state-of-the-art method, Informer, in the performance degradation prediction of aero-engines. Furthermore, we demonstrate the feasibility of DARWIN on a fleet of eight turbofan engines under real flight conditions, thereby confirming its applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
3秒前
4秒前
小盘子完成签到,获得积分10
5秒前
李繁蕊完成签到,获得积分10
5秒前
5秒前
酷波er应助mashichuang采纳,获得10
5秒前
color发布了新的文献求助10
6秒前
6秒前
Helio发布了新的文献求助10
6秒前
6秒前
顺心若魔发布了新的文献求助10
7秒前
8秒前
CLN完成签到,获得积分10
9秒前
小王姐姐完成签到,获得积分10
9秒前
harri发布了新的文献求助30
9秒前
森敷完成签到 ,获得积分10
10秒前
缥缈的寻琴应助Atlantic采纳,获得10
11秒前
11秒前
11秒前
Gary完成签到,获得积分10
12秒前
14秒前
初芷伊完成签到,获得积分10
15秒前
15秒前
16秒前
火星上青筠完成签到,获得积分10
16秒前
17秒前
勤奋的下水道工人完成签到,获得积分10
17秒前
samtol完成签到,获得积分10
17秒前
18秒前
机智念芹发布了新的文献求助10
18秒前
18秒前
19秒前
wanci应助慕容迎松采纳,获得10
20秒前
20秒前
ccx完成签到,获得积分10
20秒前
harri完成签到,获得积分10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998074
求助须知:如何正确求助?哪些是违规求助? 3537636
关于积分的说明 11272063
捐赠科研通 3276726
什么是DOI,文献DOI怎么找? 1807114
邀请新用户注册赠送积分活动 883710
科研通“疑难数据库(出版商)”最低求助积分说明 810007