阳极
材料科学
电化学
钾
碳纤维
化学工程
异质结
纳米晶
纳米技术
电极
化学
光电子学
复合材料
冶金
复合数
物理化学
工程类
作者
Haonan Wang,Kaifeng Yu,Pengtao Wang,Pengcheng Jia,Yixuan Yuan,Liang Chen
标识
DOI:10.1016/j.jcis.2023.04.079
摘要
Metal-organic frameworks (MOFs) have the advantages of controllable chemical properties, rich pore structures and reaction sites and are expected to be high-performance anode materials for the next generation of potassium-ion batteries (PIBs). However, due to the large radius of potassium ions, the pure MOF crystal structure is prone to collapse during ion insertion and processing, so its electrochemical performance is quite limited. In this work, a hollow carbon sphere-supported MOF-derived Co/CoSe heterojunction anode material for potassium-ion batteries was developed by a hydrothermal method. The anode has high potassium storage capacity (461.9 mA h/g after 200 cycles at 1 A/g), excellent cycling stability and superior rate performance. It is worth noting that the potassium ion storage capacity of the anode material shows a gradual upward trend with the charge-discharge cycle, which is 145.9 mA h/g after 3000 cycles at a current density of 10 A/g. This work demonstrates that MOF-derived CoSe anodes with high capacity and low cost may be promising candidates for the introduction of potassium ion storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI