A proactive crash risk prediction framework for lane-changing behavior incorporating individual driving styles

聚类分析 高级驾驶员辅助系统 计算机科学 撞车 机器学习 人工智能 工程类 程序设计语言
作者
Yunchao Zhang,Yanyan Chen,Xin Gu,N.N. Sze,Jianling Huang
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:188: 107072-107072 被引量:40
标识
DOI:10.1016/j.aap.2023.107072
摘要

Driving style may have an important effect on traffic safety. Proactive crash risk prediction for lane-changing behaviors incorporating individual driving styles can help drivers make safe lane-changing decisions. However, the interaction between driving styles and lane-changing risk is still not fully understood, making it difficult for advanced driver-assistance systems (ADASs) to provide personalized lane-changing risk information services. This paper proposes a personalized risk lane-changing prediction framework that considers driving style. Several driving volatility indices based on vehicle interactive features have been proposed, and a dynamic clustering method is developed to determine the best identification time window and methods of driving style. The Light Gradient Boosting Machine (LightGBM) based on Shapley additive explanation is used to predict lane-changing risk for cautious, normal, and aggressive drivers and to analyze their risk factors. The highD trajectory dataset is used to evaluate the proposed framework. The obtained results show that i) spectral clustering and a time window of 3 s can accurately identify driving styles during the lane-changing intention process; ii) the LightGBM algorithm outperforms other machine learning methods in personalized lane-changing risk prediction; iii) aggressive drivers seek more individual driving freedom than cautious and normal drivers and tend to ignore the state of the car behind them in the target lane, with a greater lane-changing risk. The research conclusion can provide basic support for the development and application of personalized lane-changing warning systems in ADASs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nihil完成签到,获得积分10
1秒前
活力的泥猴桃完成签到 ,获得积分10
2秒前
2秒前
3秒前
obito完成签到,获得积分10
3秒前
娜行发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
Ck完成签到,获得积分10
5秒前
烦烦完成签到 ,获得积分10
6秒前
百宝发布了新的文献求助10
7秒前
jiangnan发布了新的文献求助10
7秒前
Sev完成签到,获得积分10
7秒前
7秒前
可耐的乘风完成签到,获得积分10
7秒前
FIN应助obito采纳,获得30
8秒前
啾啾发布了新的文献求助10
8秒前
爱学习的向日葵完成签到,获得积分10
9秒前
9秒前
华仔应助泛泛之交采纳,获得10
10秒前
雪123发布了新的文献求助10
10秒前
10秒前
11秒前
charon发布了新的文献求助10
11秒前
凶狠的食铁兽完成签到,获得积分10
11秒前
星辰大海应助花花啊采纳,获得10
11秒前
华仔应助liuyingke采纳,获得10
11秒前
HEIKU应助还不如瞎写采纳,获得10
12秒前
liuliumei发布了新的文献求助30
13秒前
zhouzhou完成签到,获得积分10
13秒前
sure发布了新的文献求助10
13秒前
上官若男应助Hu111采纳,获得10
14秒前
务实的紫伊完成签到,获得积分10
14秒前
春风得意完成签到,获得积分10
14秒前
爱你呃不可能完成签到,获得积分10
14秒前
WSY完成签到,获得积分20
14秒前
666星爷留下了新的社区评论
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672