A proactive crash risk prediction framework for lane-changing behavior incorporating individual driving styles

聚类分析 高级驾驶员辅助系统 计算机科学 撞车 机器学习 人工智能 工程类 程序设计语言
作者
Yunchao Zhang,Yanyan Chen,Xin Gu,N.N. Sze,Jianling Huang
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:188: 107072-107072 被引量:49
标识
DOI:10.1016/j.aap.2023.107072
摘要

Driving style may have an important effect on traffic safety. Proactive crash risk prediction for lane-changing behaviors incorporating individual driving styles can help drivers make safe lane-changing decisions. However, the interaction between driving styles and lane-changing risk is still not fully understood, making it difficult for advanced driver-assistance systems (ADASs) to provide personalized lane-changing risk information services. This paper proposes a personalized risk lane-changing prediction framework that considers driving style. Several driving volatility indices based on vehicle interactive features have been proposed, and a dynamic clustering method is developed to determine the best identification time window and methods of driving style. The Light Gradient Boosting Machine (LightGBM) based on Shapley additive explanation is used to predict lane-changing risk for cautious, normal, and aggressive drivers and to analyze their risk factors. The highD trajectory dataset is used to evaluate the proposed framework. The obtained results show that i) spectral clustering and a time window of 3 s can accurately identify driving styles during the lane-changing intention process; ii) the LightGBM algorithm outperforms other machine learning methods in personalized lane-changing risk prediction; iii) aggressive drivers seek more individual driving freedom than cautious and normal drivers and tend to ignore the state of the car behind them in the target lane, with a greater lane-changing risk. The research conclusion can provide basic support for the development and application of personalized lane-changing warning systems in ADASs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不要辣椒发布了新的文献求助10
刚刚
coke发布了新的文献求助10
刚刚
刚刚
张菁发布了新的文献求助10
1秒前
幸福广山完成签到,获得积分10
1秒前
小郭完成签到,获得积分20
2秒前
烟花应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
木又发布了新的文献求助10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
Aimedar应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
汉堡包应助科研通管家采纳,获得100
3秒前
3秒前
3秒前
4秒前
Z1完成签到,获得积分10
6秒前
6秒前
轩辕寄风应助水论文行者采纳,获得10
6秒前
科研通AI5应助yif采纳,获得30
6秒前
6秒前
辛勤香芦完成签到,获得积分20
6秒前
7秒前
小何发布了新的文献求助10
8秒前
8秒前
9秒前
张菁完成签到,获得积分10
9秒前
Akim应助朴素念波采纳,获得10
9秒前
11秒前
cdercder发布了新的文献求助10
11秒前
11秒前
Jay完成签到,获得积分10
12秒前
天天快乐应助杨鹏飞123454采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980258
求助须知:如何正确求助?哪些是违规求助? 3524227
关于积分的说明 11220452
捐赠科研通 3261658
什么是DOI,文献DOI怎么找? 1800882
邀请新用户注册赠送积分活动 879359
科研通“疑难数据库(出版商)”最低求助积分说明 807234