已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A proactive crash risk prediction framework for lane-changing behavior incorporating individual driving styles

聚类分析 高级驾驶员辅助系统 计算机科学 撞车 机器学习 人工智能 工程类 程序设计语言
作者
Yunchao Zhang,Yanyan Chen,Xin Gu,N.N. Sze,Jianling Huang
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:188: 107072-107072 被引量:23
标识
DOI:10.1016/j.aap.2023.107072
摘要

Driving style may have an important effect on traffic safety. Proactive crash risk prediction for lane-changing behaviors incorporating individual driving styles can help drivers make safe lane-changing decisions. However, the interaction between driving styles and lane-changing risk is still not fully understood, making it difficult for advanced driver-assistance systems (ADASs) to provide personalized lane-changing risk information services. This paper proposes a personalized risk lane-changing prediction framework that considers driving style. Several driving volatility indices based on vehicle interactive features have been proposed, and a dynamic clustering method is developed to determine the best identification time window and methods of driving style. The Light Gradient Boosting Machine (LightGBM) based on Shapley additive explanation is used to predict lane-changing risk for cautious, normal, and aggressive drivers and to analyze their risk factors. The highD trajectory dataset is used to evaluate the proposed framework. The obtained results show that i) spectral clustering and a time window of 3 s can accurately identify driving styles during the lane-changing intention process; ii) the LightGBM algorithm outperforms other machine learning methods in personalized lane-changing risk prediction; iii) aggressive drivers seek more individual driving freedom than cautious and normal drivers and tend to ignore the state of the car behind them in the target lane, with a greater lane-changing risk. The research conclusion can provide basic support for the development and application of personalized lane-changing warning systems in ADASs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助Nakacoke77采纳,获得10
刚刚
1秒前
1秒前
小十一完成签到 ,获得积分10
1秒前
2秒前
erin完成签到,获得积分10
2秒前
华仔应助山楂采纳,获得10
2秒前
2秒前
3秒前
4秒前
5秒前
cc发布了新的文献求助10
7秒前
7秒前
小马甲应助董H采纳,获得10
7秒前
董咚咚发布了新的文献求助10
7秒前
一杯茶发布了新的文献求助10
8秒前
阿帕奇完成签到,获得积分10
9秒前
yuaner发布了新的文献求助10
9秒前
Singularity应助蓬蒿人采纳,获得10
9秒前
princecoof发布了新的文献求助10
10秒前
12秒前
14秒前
16秒前
16秒前
黄雪峰发布了新的文献求助10
17秒前
阿帕奇发布了新的文献求助10
18秒前
ZC23发布了新的文献求助50
18秒前
ding应助董咚咚采纳,获得10
21秒前
21秒前
丘比特应助静静子采纳,获得10
21秒前
21秒前
01231009yrjz完成签到,获得积分10
22秒前
23秒前
wuludie发布了新的文献求助10
23秒前
cicy发布了新的文献求助10
25秒前
26秒前
cc完成签到,获得积分20
27秒前
七七发布了新的文献求助10
28秒前
烟花应助坚定晓曼采纳,获得10
29秒前
29秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171256
求助须知:如何正确求助?哪些是违规求助? 2822135
关于积分的说明 7938307
捐赠科研通 2482653
什么是DOI,文献DOI怎么找? 1322678
科研通“疑难数据库(出版商)”最低求助积分说明 633694
版权声明 602627