Authenticity and species identification of Fritillariae cirrhosae: a data fusion method combining electronic nose, electronic tongue, electronic eye and near infrared spectroscopy

电子鼻 电子舌 人工智能 鉴定(生物学) 模式识别(心理学) 传感器融合 融合 化学 计算机科学 食品科学 植物 生物 品味 语言学 哲学
作者
Xinjing Gui,Han Li,Rui Ma,Tian Liangyu,Fu-Guo Hou,Haiyang Li,Xue-Hua Fan,Yanli Wang,Jing Yao,Junhan Shi,Lu Zhang,Xuelin Li,Ruixin Liu
出处
期刊:Frontiers in Chemistry [Frontiers Media SA]
卷期号:11 被引量:4
标识
DOI:10.3389/fchem.2023.1179039
摘要

This paper focuses on determining the authenticity and identifying the species of Fritillariae cirrhosae using electronic nose, electronic tongue, and electronic eye sensors, near infrared and mid-level data fusion. 80 batches of Fritillariae cirrhosae and its counterfeits (including several batches of Fritillaria unibracteata Hsiao et K.C. Hsia, Fritillaria przewalskii Maxim, Fritillaria delavayi Franch and Fritillaria ussuriensis Maxim) were initially identified by Chinese medicine specialists and by criteria in the 2020 edition of Chinese Pharmacopoeia . After obtaining the information from several sensors we constructed single-source PLS-DA models for authenticity identification and single-source PCA-DA models for species identification. We selected variables of interest by VIP value and Wilk’s lambda value, and we subsequently constructed the three-source fusion model of intelligent senses and the four-source fusion model of intelligent senses and near-infrared spectroscopy. We then explained and analyzed the four-source fusion models based on the sensitive substances detected by key sensors. The accuracies of single-source authenticity PLS-DA identification models based on electronic nose, electronic eye, electronic tongue sensors and near-infrared were respectively 96.25%, 91.25%, 97.50% and 97.50%. The accuracies of single-source PCA-DA species identification models were respectively 85%, 71.25%, 97.50% and 97.50%. After three-source data fusion, the accuracy of the authenticity identification of the PLS-DA identification model was 97.50% and the accuracy of the species identification of the PCA-DA model was 95%. After four-source data fusion, the accuracy of the authenticity of the PLS-DA identification model was 98.75% and the accuracy of the species identification of the PCA-DA model was 97.50%. In terms of authenticity identification, four-source data fusion can improve the performance of the model, while for the identification of the species the four-source data fusion failed to optimize the performance of the model. We conclude that electronic nose, electronic tongue, electronic eye data and near-infrared spectroscopy combined with data fusion and chemometrics methods can identify the authenticity and determine the species of Fritillariae cirrhosae . Our model explanation and analysis can help other researchers identify key quality factors for sample identification. This study aims to provide a reference method for the quality evaluation of Chinese herbs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
FashionBoy应助动听的老鼠采纳,获得10
2秒前
哭泣初夏完成签到 ,获得积分10
2秒前
maodoudou完成签到,获得积分10
3秒前
阳光半仙发布了新的文献求助10
3秒前
爆米花应助徐若楠采纳,获得10
4秒前
4秒前
自然涵易发布了新的文献求助10
4秒前
LX发布了新的文献求助10
4秒前
4秒前
thinking发布了新的文献求助10
5秒前
Mint发布了新的文献求助10
5秒前
勤劳滑板发布了新的文献求助10
5秒前
Jing发布了新的文献求助10
5秒前
紧张的世德完成签到,获得积分10
6秒前
斯文的书琴完成签到,获得积分10
6秒前
6秒前
Yayaaaaa发布了新的文献求助50
6秒前
m13965062353完成签到,获得积分10
6秒前
7秒前
QI发布了新的文献求助10
8秒前
9秒前
hiadg完成签到 ,获得积分10
9秒前
9秒前
10秒前
共享精神应助独立卫生间采纳,获得10
11秒前
11秒前
小马甲应助可靠的寒风采纳,获得10
11秒前
单薄之瑶发布了新的文献求助10
13秒前
踏实青槐发布了新的文献求助10
13秒前
华仔应助huiiiii采纳,获得10
13秒前
谢峥嵘发布了新的文献求助10
15秒前
kong发布了新的文献求助10
15秒前
大意的绿蓉完成签到,获得积分10
16秒前
reyou发布了新的文献求助10
17秒前
Yeri完成签到 ,获得积分10
18秒前
18秒前
18秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149155
求助须知:如何正确求助?哪些是违规求助? 2800230
关于积分的说明 7839164
捐赠科研通 2457781
什么是DOI,文献DOI怎么找? 1308112
科研通“疑难数据库(出版商)”最低求助积分说明 628408
版权声明 601706