A Collaborative Filtering Movies Recommendation System based on Graph Neural Network

计算机科学 推荐系统 协同过滤 图形 人工神经网络 代表(政治) 机器学习 产品(数学) 人工智能 服务(商务) 理论计算机科学 政治 经济 经济 法学 数学 政治学 几何学
作者
Redwane Nesmaoui,Mouad Louhichi,Mohamed Lazaar
出处
期刊:Procedia Computer Science [Elsevier]
卷期号:220: 456-461 被引量:6
标识
DOI:10.1016/j.procs.2023.03.058
摘要

The implementation of machine learning algorithms in marketing by organisations has been more beneficial in recent years. Overall, it has become a major contributor to a company's success and development in terms of growth and income since it helps to recommend the interesting product/service to the right individuals or groups without requiring them to go through a long complex procedure to receive an interesting item from a list of millions, in the other side Graph Neural Network is used widely in the recent machine learning applications including Recommender Systems. The purpose of this research is the evaluation of a LightGCN Movies Recommendation System, and its efficiency in modelling and building relationship between movies, by providing suggesting new/unknown items to the users that will like them, those recommendations will be based on representing Movies as a node and their ratings as edges of the graph, which will help to build a continuous representation of nodes and edges, this approach required the combination of a classification model to predict the existence of the relationship between movies and their features as genres, release year, etc, this approach will enable us to predict when no neighbourhoods information is known.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
scfsl完成签到,获得积分10
3秒前
静静完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
李爱国应助luo采纳,获得10
5秒前
7秒前
7秒前
7秒前
yznfly应助威武的嫣然采纳,获得20
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
zhou发布了新的文献求助10
11秒前
深情安青应助桉_采纳,获得10
12秒前
13秒前
zhanglinfeng完成签到,获得积分10
15秒前
18秒前
仲谋发布了新的文献求助10
23秒前
23秒前
24秒前
25秒前
25秒前
25秒前
slm完成签到,获得积分10
25秒前
地表飞猪应助Dou采纳,获得10
27秒前
luo发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
呆萌的无剑完成签到,获得积分10
29秒前
29秒前
CipherSage应助Yyuan采纳,获得10
30秒前
31秒前
Wjc发布了新的文献求助30
31秒前
哦哦哦完成签到,获得积分10
31秒前
32秒前
阳光的鲂完成签到 ,获得积分10
32秒前
超越发布了新的文献求助10
36秒前
rebubu应助科研牛马徐某人采纳,获得10
37秒前
搜集达人应助追光者采纳,获得20
37秒前
虚幻白桃发布了新的文献求助30
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679656
求助须知:如何正确求助?哪些是违规求助? 4992557
关于积分的说明 15170404
捐赠科研通 4839503
什么是DOI,文献DOI怎么找? 2593348
邀请新用户注册赠送积分活动 1546505
关于科研通互助平台的介绍 1504594