Vision-guided crack identification and size quantification framework for dam underwater concrete structures

水下 鉴定(生物学) 计算机科学 地质学 结构工程 工程类 海洋学 植物 生物
作者
Yangtao Li,Haitao Zhao,Yang Wei,Tengfei Bao,Tianyu Li,Qiudong Wang,Li Wang,Mengfan Zhao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241287906
摘要

Remotely operated vehicles with cameras provide a non-contact inspection solution for dam underwater structural defect detection. However, manual information extraction methods suffer from problems like labor costs and high misjudgment. This study proposes an integrated dam underwater crack identification and size quantification framework using machine vision and deep learning. First, a real-time automatic detection framework for dam underwater cracks is built via You Only Look Once v5 (YOLOv5), and four different backbone detectors are introduced to balance detection accuracy and speed. Then, the Swin-Transformer module is inserted into the YOLOv5 model to enhance its feature extraction capability and small object detection capability. Next, a method for measuring the true size of cracks was constructed based on deep learning and infrared laser rangefinders. In this study, physical model experiments and actual engineering projects are combined to validate the generalization capability of the proposed crack identification and size quantification method. Experimental results show that the Swin-Transformer-based YOLOv5 model effectively balances detection accuracy and speed with a precision of 0.986, a recall of 0.979, a mean average precision of 0.985, and a frame rate of 68 frames per second in detecting underwater crack images with 768 × 576 pixels. In addition, the proposed method can accurately identify and detect cracks in complex underwater scenes, including obstacle interference, tilt shooting angle, uneven illumination, and turbid water scenarios. Moreover, the method proposed in this paper can quantify the overall size and geometric parameters of underwater cracks with relatively small errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助热情的戾采纳,获得10
1秒前
怕黑的路人完成签到,获得积分10
1秒前
奋斗完成签到,获得积分20
3秒前
3秒前
3秒前
fat完成签到,获得积分10
4秒前
hokuto应助mmyhn采纳,获得10
4秒前
5秒前
Always完成签到,获得积分10
6秒前
小虫完成签到,获得积分10
7秒前
9秒前
隐形曼青应助swh采纳,获得10
9秒前
0817完成签到,获得积分10
9秒前
深情安青应助wzjs采纳,获得10
9秒前
vivi发布了新的文献求助10
10秒前
12秒前
12秒前
14秒前
热情的戾发布了新的文献求助10
15秒前
笑眯眯发布了新的文献求助10
16秒前
shifeng_zai发布了新的文献求助10
16秒前
16秒前
聪慧一笑发布了新的文献求助10
18秒前
正直的hh完成签到,获得积分10
19秒前
oops发布了新的文献求助10
19秒前
swh发布了新的文献求助10
19秒前
kk举报123求助涉嫌违规
20秒前
20秒前
21秒前
热情的戾完成签到,获得积分10
22秒前
樱香音子完成签到,获得积分10
24秒前
仁者无惧完成签到 ,获得积分10
24秒前
yahage发布了新的文献求助10
24秒前
深情安青应助joysa采纳,获得10
24秒前
swh完成签到,获得积分10
24秒前
任我行发布了新的文献求助10
24秒前
亮皮鱼老大完成签到,获得积分10
25秒前
笑眯眯完成签到,获得积分10
28秒前
量子光学的腔光力完成签到,获得积分10
28秒前
姜姜发布了新的文献求助10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
花菁类近红外荧光染料的合成及光学性能研究 500
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161232
求助须知:如何正确求助?哪些是违规求助? 2812684
关于积分的说明 7895969
捐赠科研通 2471492
什么是DOI,文献DOI怎么找? 1316042
科研通“疑难数据库(出版商)”最低求助积分说明 631084
版权声明 602112