Vision-guided crack identification and size quantification framework for dam underwater concrete structures

水下 鉴定(生物学) 计算机科学 地质学 结构工程 工程类 植物 生物 海洋学
作者
Yangtao Li,Haitao Zhao,Yang Wei,Tengfei Bao,Tianyu Li,Qiudong Wang,Ning Wang,Mengfan Zhao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:24 (4): 2125-2148 被引量:18
标识
DOI:10.1177/14759217241287906
摘要

Remotely operated vehicles with cameras provide a non-contact inspection solution for dam underwater structural defect detection. However, manual information extraction methods suffer from problems like labor costs and high misjudgment. This study proposes an integrated dam underwater crack identification and size quantification framework using machine vision and deep learning. First, a real-time automatic detection framework for dam underwater cracks is built via You Only Look Once v5 (YOLOv5), and four different backbone detectors are introduced to balance detection accuracy and speed. Then, the Swin-Transformer module is inserted into the YOLOv5 model to enhance its feature extraction capability and small object detection capability. Next, a method for measuring the true size of cracks was constructed based on deep learning and infrared laser rangefinders. In this study, physical model experiments and actual engineering projects are combined to validate the generalization capability of the proposed crack identification and size quantification method. Experimental results show that the Swin-Transformer-based YOLOv5 model effectively balances detection accuracy and speed with a precision of 0.986, a recall of 0.979, a mean average precision of 0.985, and a frame rate of 68 frames per second in detecting underwater crack images with 768 × 576 pixels. In addition, the proposed method can accurately identify and detect cracks in complex underwater scenes, including obstacle interference, tilt shooting angle, uneven illumination, and turbid water scenarios. Moreover, the method proposed in this paper can quantify the overall size and geometric parameters of underwater cracks with relatively small errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助CCTV采纳,获得10
1秒前
小二郎应助圣斗士采纳,获得10
1秒前
21完成签到 ,获得积分10
2秒前
3秒前
八九发布了新的文献求助10
3秒前
CipherSage应助aa采纳,获得30
4秒前
浮游应助Liz111采纳,获得10
5秒前
新羽完成签到,获得积分10
5秒前
FashionBoy应助铁瓜李采纳,获得10
5秒前
畅快自行车完成签到,获得积分10
5秒前
小破网完成签到 ,获得积分0
5秒前
6秒前
SciGPT应助在南方看北方采纳,获得10
6秒前
王丹靖完成签到 ,获得积分10
7秒前
8秒前
无私安白发布了新的文献求助10
8秒前
9秒前
努力哥完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助100
12秒前
可爱的函函应助SKF采纳,获得20
13秒前
13秒前
13秒前
14秒前
Xxuan完成签到,获得积分10
14秒前
14秒前
东方三问完成签到,获得积分10
14秒前
grassroot发布了新的文献求助10
15秒前
禾禾完成签到,获得积分10
15秒前
倒霉的芒果完成签到 ,获得积分10
15秒前
白华苍松发布了新的文献求助10
16秒前
卷卷发布了新的文献求助10
16秒前
欢喜不悔发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
求助人员应助Wd采纳,获得10
19秒前
传奇3应助Painkiller_采纳,获得10
19秒前
20秒前
20秒前
田様应助Sakura采纳,获得10
20秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586279
求助须知:如何正确求助?哪些是违规求助? 4669574
关于积分的说明 14778915
捐赠科研通 4619294
什么是DOI,文献DOI怎么找? 2530818
邀请新用户注册赠送积分活动 1499652
关于科研通互助平台的介绍 1467830