Vision-guided crack identification and size quantification framework for dam underwater concrete structures

水下 鉴定(生物学) 计算机科学 地质学 结构工程 工程类 植物 生物 海洋学
作者
Yangtao Li,Haitao Zhao,Yang Wei,Tengfei Bao,Tianyu Li,Qiudong Wang,Ning Wang,Mengfan Zhao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:1
标识
DOI:10.1177/14759217241287906
摘要

Remotely operated vehicles with cameras provide a non-contact inspection solution for dam underwater structural defect detection. However, manual information extraction methods suffer from problems like labor costs and high misjudgment. This study proposes an integrated dam underwater crack identification and size quantification framework using machine vision and deep learning. First, a real-time automatic detection framework for dam underwater cracks is built via You Only Look Once v5 (YOLOv5), and four different backbone detectors are introduced to balance detection accuracy and speed. Then, the Swin-Transformer module is inserted into the YOLOv5 model to enhance its feature extraction capability and small object detection capability. Next, a method for measuring the true size of cracks was constructed based on deep learning and infrared laser rangefinders. In this study, physical model experiments and actual engineering projects are combined to validate the generalization capability of the proposed crack identification and size quantification method. Experimental results show that the Swin-Transformer-based YOLOv5 model effectively balances detection accuracy and speed with a precision of 0.986, a recall of 0.979, a mean average precision of 0.985, and a frame rate of 68 frames per second in detecting underwater crack images with 768 × 576 pixels. In addition, the proposed method can accurately identify and detect cracks in complex underwater scenes, including obstacle interference, tilt shooting angle, uneven illumination, and turbid water scenarios. Moreover, the method proposed in this paper can quantify the overall size and geometric parameters of underwater cracks with relatively small errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助云渺采纳,获得10
刚刚
addd发布了新的文献求助10
2秒前
JCC完成签到,获得积分10
2秒前
Walwyn完成签到 ,获得积分10
2秒前
3秒前
liling发布了新的文献求助30
4秒前
猪猪hero应助孙亦沈采纳,获得10
5秒前
liuchuanwang发布了新的文献求助10
6秒前
刘钱美子发布了新的文献求助10
7秒前
7秒前
9秒前
ssyl34发布了新的文献求助30
9秒前
11秒前
kikiaini完成签到,获得积分0
11秒前
LMH完成签到 ,获得积分10
11秒前
英姑应助addd采纳,获得10
12秒前
小火车完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
云渺发布了新的文献求助10
13秒前
大卫完成签到,获得积分20
14秒前
ylh完成签到,获得积分10
14秒前
小火车发布了新的文献求助10
17秒前
YT完成签到,获得积分10
18秒前
Akim应助云渺采纳,获得10
20秒前
马里奥完成签到,获得积分10
21秒前
22秒前
无花果应助ypppp采纳,获得10
23秒前
24秒前
梅子完成签到 ,获得积分10
25秒前
27秒前
27秒前
大卫发布了新的文献求助30
27秒前
jenningseastera应助JC采纳,获得10
28秒前
易安发布了新的文献求助30
30秒前
超级芷云完成签到 ,获得积分10
33秒前
琨琨好困发布了新的文献求助10
33秒前
33秒前
酷波er应助十一采纳,获得10
37秒前
思源应助飞先生采纳,获得10
38秒前
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497949
关于积分的说明 11089475
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309