1230 Design of enhanced TCR against cancer antigens using an AI system

T细胞受体 计算机科学 抗原 免疫学 医学 免疫系统 T细胞
作者
Martin Renqiang Min,Kazuhide Onoguchi,Tianxiao Li,Daiki Mori,Jonathan Warrell,Pierre Machart,Anja Moesch,Andrea Meiser,Ivy Grace Pait,Ayako Okamura,Daisuke Muraoka,Hirokazu Matsushita,Kaïdre Bendjama
标识
DOI:10.1136/jitc-2024-sitc2024.1230
摘要

Background

Naturally occurring TCR targeting cancer antigens are associated with relatively low affinity comparatively to TCR targeting external pathogens. This might be explained by the proximity of cancer specific sequences to self. Engineering of modified affinity enhanced TCR constitutes a possible solution, however, TCR binding remains challenging to model using structural biology approaches because of the conformational flexibility of the TCR complex. The use of machine learning based methods constitutes a promising approach to design TCR of higher affinity. Herein, we report enhanced affinity TCR sequences against cancer antigens designed using TCRPPO, a proprietary pipeline for TCR sequence optimization.

Methods

TCRPPO is a new reinforcement-learning framework based on proximal policy optimization to optimize TCRs through a mutation policy. Briefly after training the system on a series of TCR sequences known to bind a given target, TCRPPO introduces mutations on existing sequence to achieve higher affinity guided by a reward function factoring in affinity of the new sequence and the likelihood for this sequence to be a valid TCRs. To validate our approach, we designed a series of candidate TCR sequences against known clinically relevant cancer antigens (KRAS G12V and MART-1) and evaluated their biological functional potency. To do so, genes encoding variable regions of the original and optimized TCRα and β chains were assembled into plasmid vectors containing a constant region of a TCRα or TCRβ chain. TAP fragments of TCRα and TCRβ together with a NFAT-Luc reporter plasmid were transfected into the ΔTCR Jurkat cell line. The cells were cultured in the presence of antigen presenting cells with or without target peptide, and then the activation of the reporter gene was measured by luciferase assay.

Results

Our AI-based TCR engineering approach generated valid enhanced TCR sequences against the selected epitopes. Engineered TCR transfected cells showed higher activity in the functional assay and demonstrated that TCR generated using a mutation policy can achieve higher biological activity than endogenous TCR. Enhanced TCR generated against KRAS G12V and MART-1 are dissimilar from already described TCR.1

Conclusions

We successfully engineered TCRs to have better antigen recognition. The enhanced TCRs warrant further characterization to evaluate their therapeutic potential. Beyond this case, our approach constitutes a pipeline that might be applied to other targets for which alternative TCRs are required.

Reference

Chen Z, Min MR, Guo H, Cheng C, Clancy T, Ning X. T-Cell receptor optimization with reinforcement learning and mutation polices for precision immunotherapy. In: Tang, H. (eds) Research in Computational Molecular Biology. RECOMB. 2023;Lecture Notes in Computer Science(), vol 13976. Springer, Cham. https://doi.org/10.1007/978-3-031-29119-7_11.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyt发布了新的文献求助10
刚刚
小晋完成签到,获得积分10
1秒前
1秒前
欧阳静芙发布了新的文献求助10
2秒前
CodeCraft应助Jerry采纳,获得10
4秒前
chen发布了新的文献求助10
4秒前
4秒前
4秒前
fate发布了新的文献求助10
6秒前
柔弱的一鸣完成签到 ,获得积分10
7秒前
飞翔云端完成签到,获得积分10
8秒前
墨染书香发布了新的文献求助10
10秒前
yaoqi完成签到,获得积分10
10秒前
李爱国应助Lancer采纳,获得30
10秒前
10秒前
jinbozhang发布了新的文献求助10
12秒前
柔弱的一鸣关注了科研通微信公众号
12秒前
fate完成签到,获得积分10
13秒前
kingwill发布了新的文献求助30
13秒前
爆米花应助夜白采纳,获得10
13秒前
研友_VZG7GZ应助加快步伐采纳,获得30
14秒前
ZYL完成签到,获得积分10
15秒前
雅鹿贝鲁完成签到,获得积分10
16秒前
格格巫发布了新的文献求助10
16秒前
小蘑菇应助仙仙采纳,获得10
18秒前
19秒前
Lucas应助dmm采纳,获得10
19秒前
Orange应助嘉嘉琦采纳,获得10
20秒前
21秒前
失眠的香菇完成签到 ,获得积分10
22秒前
22秒前
bkagyin应助ppxx采纳,获得10
23秒前
23秒前
guojingjing发布了新的文献求助10
24秒前
称心可乐发布了新的文献求助30
24秒前
24秒前
24秒前
123发布了新的文献求助10
25秒前
27秒前
侯妍冰发布了新的文献求助10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670801
求助须知:如何正确求助?哪些是违规求助? 3227675
关于积分的说明 9776795
捐赠科研通 2937868
什么是DOI,文献DOI怎么找? 1609663
邀请新用户注册赠送积分活动 760441
科研通“疑难数据库(出版商)”最低求助积分说明 735928