Enhancing Few-Shot Learning with Integrated Data and GAN Model Approaches

弹丸 计算机科学 材料科学 冶金
作者
Feng Yuan,Aoran Shen,Jinxia Hu,Yingbin Liang,Shiru Wang,Junliang Du
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.2411.16567
摘要

This paper presents an innovative approach to enhancing few-shot learning by integrating data augmentation with model fine-tuning in a framework designed to tackle the challenges posed by small-sample data. Recognizing the critical limitations of traditional machine learning models that require large datasets-especially in fields such as drug discovery, target recognition, and malicious traffic detection-this study proposes a novel strategy that leverages Generative Adversarial Networks (GANs) and advanced optimization techniques to improve model performance with limited data. Specifically, the paper addresses the noise and bias issues introduced by data augmentation methods, contrasting them with model-based approaches, such as fine-tuning and metric learning, which rely heavily on related datasets. By combining Markov Chain Monte Carlo (MCMC) sampling and discriminative model ensemble strategies within a GAN framework, the proposed model adjusts generative and discriminative distributions to simulate a broader range of relevant data. Furthermore, it employs MHLoss and a reparameterized GAN ensemble to enhance stability and accelerate convergence, ultimately leading to improved classification performance on small-sample images and structured datasets. Results confirm that the MhERGAN algorithm developed in this research is highly effective for few-shot learning, offering a practical solution that bridges data scarcity with high-performing model adaptability and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助小王时采纳,获得10
1秒前
随机发布了新的文献求助10
1秒前
1秒前
1秒前
BRID完成签到,获得积分10
1秒前
3秒前
回首脖子疼完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
5秒前
5秒前
晴qq完成签到,获得积分10
6秒前
6秒前
springovo完成签到,获得积分10
7秒前
TCB发布了新的文献求助10
7秒前
英姑应助hif1a采纳,获得10
7秒前
鸣蜩阿六完成签到,获得积分10
8秒前
香蕉觅云应助唐同学采纳,获得10
8秒前
8秒前
8秒前
9秒前
吃货发布了新的文献求助10
10秒前
hgg完成签到,获得积分10
10秒前
qsh完成签到,获得积分10
10秒前
10秒前
泡泡完成签到 ,获得积分10
10秒前
舒适路人发布了新的文献求助10
10秒前
10秒前
shinyia完成签到,获得积分10
10秒前
希望天下0贩的0应助雪落采纳,获得10
11秒前
Profeto完成签到,获得积分10
11秒前
huiwanfeifei发布了新的文献求助10
11秒前
SciGPT应助现代的小馒头采纳,获得10
12秒前
12秒前
裘文献发布了新的文献求助10
12秒前
玖Nine发布了新的文献求助10
12秒前
烟花应助qwp采纳,获得10
12秒前
冬狩发布了新的文献求助10
13秒前
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961496
求助须知:如何正确求助?哪些是违规求助? 3507837
关于积分的说明 11138394
捐赠科研通 3240311
什么是DOI,文献DOI怎么找? 1790903
邀请新用户注册赠送积分活动 872636
科研通“疑难数据库(出版商)”最低求助积分说明 803288