Enhancing Few-Shot Learning with Integrated Data and GAN Model Approaches

弹丸 计算机科学 材料科学 冶金
作者
Feng Yuan,Aoran Shen,Jinxia Hu,Yingbin Liang,Shiru Wang,Junliang Du
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.2411.16567
摘要

This paper presents an innovative approach to enhancing few-shot learning by integrating data augmentation with model fine-tuning in a framework designed to tackle the challenges posed by small-sample data. Recognizing the critical limitations of traditional machine learning models that require large datasets-especially in fields such as drug discovery, target recognition, and malicious traffic detection-this study proposes a novel strategy that leverages Generative Adversarial Networks (GANs) and advanced optimization techniques to improve model performance with limited data. Specifically, the paper addresses the noise and bias issues introduced by data augmentation methods, contrasting them with model-based approaches, such as fine-tuning and metric learning, which rely heavily on related datasets. By combining Markov Chain Monte Carlo (MCMC) sampling and discriminative model ensemble strategies within a GAN framework, the proposed model adjusts generative and discriminative distributions to simulate a broader range of relevant data. Furthermore, it employs MHLoss and a reparameterized GAN ensemble to enhance stability and accelerate convergence, ultimately leading to improved classification performance on small-sample images and structured datasets. Results confirm that the MhERGAN algorithm developed in this research is highly effective for few-shot learning, offering a practical solution that bridges data scarcity with high-performing model adaptability and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助火火采纳,获得10
1秒前
suise完成签到,获得积分10
1秒前
xxfsx应助jnwong采纳,获得20
1秒前
Eli应助前行的灿采纳,获得20
2秒前
ZHEN发布了新的文献求助10
2秒前
河豚素应助浅笑安然采纳,获得10
3秒前
5秒前
纯真的冰蓝完成签到,获得积分10
5秒前
慕青应助苦咖啡采纳,获得10
5秒前
5秒前
8秒前
增值完成签到,获得积分10
9秒前
吃花蝴蝶吗完成签到,获得积分10
10秒前
10秒前
leslie完成签到,获得积分20
11秒前
小稻草人发布了新的文献求助10
12秒前
12秒前
钟金男发布了新的文献求助10
13秒前
Jasper应助大白不白采纳,获得10
13秒前
南风完成签到 ,获得积分10
14秒前
增值发布了新的文献求助10
15秒前
拉长的橘子完成签到,获得积分20
15秒前
sun完成签到,获得积分10
16秒前
852应助苹果的苹采纳,获得30
16秒前
狂野飞柏完成签到 ,获得积分10
16秒前
463关注了科研通微信公众号
19秒前
19秒前
19秒前
哭泣的雪巧完成签到,获得积分10
19秒前
KingYugene发布了新的文献求助10
20秒前
21秒前
21秒前
YBY完成签到,获得积分10
21秒前
研友_VZG7GZ应助leslie采纳,获得50
21秒前
22秒前
高亭亭给高亭亭的求助进行了留言
23秒前
arui发布了新的文献求助10
25秒前
zy关闭了zy文献求助
26秒前
在水一方应助自然的秋尽采纳,获得10
28秒前
大白不白发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457723
求助须知:如何正确求助?哪些是违规求助? 4563994
关于积分的说明 14293028
捐赠科研通 4488769
什么是DOI,文献DOI怎么找? 2458704
邀请新用户注册赠送积分活动 1448647
关于科研通互助平台的介绍 1424343