Enhancing Few-Shot Learning with Integrated Data and GAN Model Approaches

弹丸 计算机科学 材料科学 冶金
作者
Feng Yuan,Aoran Shen,Jinxia Hu,Yingbin Liang,Shiru Wang,Junliang Du
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.16567
摘要

This paper presents an innovative approach to enhancing few-shot learning by integrating data augmentation with model fine-tuning in a framework designed to tackle the challenges posed by small-sample data. Recognizing the critical limitations of traditional machine learning models that require large datasets-especially in fields such as drug discovery, target recognition, and malicious traffic detection-this study proposes a novel strategy that leverages Generative Adversarial Networks (GANs) and advanced optimization techniques to improve model performance with limited data. Specifically, the paper addresses the noise and bias issues introduced by data augmentation methods, contrasting them with model-based approaches, such as fine-tuning and metric learning, which rely heavily on related datasets. By combining Markov Chain Monte Carlo (MCMC) sampling and discriminative model ensemble strategies within a GAN framework, the proposed model adjusts generative and discriminative distributions to simulate a broader range of relevant data. Furthermore, it employs MHLoss and a reparameterized GAN ensemble to enhance stability and accelerate convergence, ultimately leading to improved classification performance on small-sample images and structured datasets. Results confirm that the MhERGAN algorithm developed in this research is highly effective for few-shot learning, offering a practical solution that bridges data scarcity with high-performing model adaptability and generalization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张超完成签到,获得积分10
1秒前
1秒前
昼夜本色发布了新的文献求助10
2秒前
你可真下饭完成签到,获得积分10
2秒前
2秒前
qianhuxinyu发布了新的文献求助10
3秒前
润恩发布了新的文献求助10
5秒前
朴素夜梦完成签到,获得积分10
5秒前
5秒前
5秒前
愤怒也哈哈完成签到,获得积分10
5秒前
6秒前
Pyrene发布了新的文献求助30
6秒前
6秒前
7秒前
ding应助零零采纳,获得10
7秒前
Murphy完成签到 ,获得积分10
8秒前
ohno耶耶耶完成签到,获得积分10
9秒前
9秒前
七院应助忧郁绝音采纳,获得30
10秒前
天天快乐应助zzYu采纳,获得10
10秒前
10秒前
YOUNG-M发布了新的文献求助10
11秒前
血橙完成签到,获得积分10
12秒前
12秒前
乐枫完成签到,获得积分10
14秒前
15秒前
JCyang发布了新的文献求助10
16秒前
脑洞疼应助热情的纸飞机采纳,获得10
16秒前
shi hui发布了新的文献求助10
16秒前
16秒前
天天快乐应助不散的和弦采纳,获得10
18秒前
19秒前
19秒前
19秒前
YOUNG-M完成签到,获得积分10
19秒前
20秒前
20秒前
胖虎不胖完成签到,获得积分10
21秒前
wltwb发布了新的文献求助10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351299
求助须知:如何正确求助?哪些是违规求助? 2976784
关于积分的说明 8676604
捐赠科研通 2657950
什么是DOI,文献DOI怎么找? 1455336
科研通“疑难数据库(出版商)”最低求助积分说明 673832
邀请新用户注册赠送积分活动 664315