Enhancing Few-Shot Learning with Integrated Data and GAN Model Approaches

弹丸 计算机科学 材料科学 冶金
作者
Feng Yuan,Aoran Shen,Jinxia Hu,Yingbin Liang,Shiru Wang,Junliang Du
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.2411.16567
摘要

This paper presents an innovative approach to enhancing few-shot learning by integrating data augmentation with model fine-tuning in a framework designed to tackle the challenges posed by small-sample data. Recognizing the critical limitations of traditional machine learning models that require large datasets-especially in fields such as drug discovery, target recognition, and malicious traffic detection-this study proposes a novel strategy that leverages Generative Adversarial Networks (GANs) and advanced optimization techniques to improve model performance with limited data. Specifically, the paper addresses the noise and bias issues introduced by data augmentation methods, contrasting them with model-based approaches, such as fine-tuning and metric learning, which rely heavily on related datasets. By combining Markov Chain Monte Carlo (MCMC) sampling and discriminative model ensemble strategies within a GAN framework, the proposed model adjusts generative and discriminative distributions to simulate a broader range of relevant data. Furthermore, it employs MHLoss and a reparameterized GAN ensemble to enhance stability and accelerate convergence, ultimately leading to improved classification performance on small-sample images and structured datasets. Results confirm that the MhERGAN algorithm developed in this research is highly effective for few-shot learning, offering a practical solution that bridges data scarcity with high-performing model adaptability and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
billyin发布了新的文献求助10
刚刚
刚刚
了一李应助qs采纳,获得10
刚刚
共享精神应助何必在乎采纳,获得10
1秒前
顺利的夜梦完成签到,获得积分10
1秒前
想跟这个世界讲个道理完成签到,获得积分10
1秒前
zwyingg完成签到,获得积分10
1秒前
Mental发布了新的文献求助10
2秒前
tracy发布了新的文献求助10
2秒前
3秒前
领导范儿应助欢喜的毛豆采纳,获得10
3秒前
Luis发布了新的文献求助10
4秒前
太阳花发布了新的文献求助20
5秒前
renshiq发布了新的文献求助10
5秒前
悦耳的诗云完成签到,获得积分10
7秒前
CRUSADER发布了新的文献求助10
7秒前
吃不起橘子了完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
gouzi关注了科研通微信公众号
10秒前
10秒前
这波你的吗完成签到,获得积分20
10秒前
wkjfh应助自由思枫采纳,获得50
10秒前
左丘冬寒完成签到,获得积分10
10秒前
头秃科研人完成签到,获得积分10
10秒前
红糖发糕发布了新的文献求助10
11秒前
qiu发布了新的文献求助10
12秒前
13秒前
科研通AI6应助犹豫梦旋采纳,获得10
14秒前
14秒前
billyin完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
果子发布了新的文献求助10
15秒前
可爱的函函应助杨洋采纳,获得10
15秒前
张弛华完成签到,获得积分10
16秒前
rongrong完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382