Enhancing Few-Shot Learning with Integrated Data and GAN Model Approaches

弹丸 计算机科学 材料科学 冶金
作者
Feng Yuan,Aoran Shen,Jinxia Hu,Yingbin Liang,Shiru Wang,Junliang Du
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.16567
摘要

This paper presents an innovative approach to enhancing few-shot learning by integrating data augmentation with model fine-tuning in a framework designed to tackle the challenges posed by small-sample data. Recognizing the critical limitations of traditional machine learning models that require large datasets-especially in fields such as drug discovery, target recognition, and malicious traffic detection-this study proposes a novel strategy that leverages Generative Adversarial Networks (GANs) and advanced optimization techniques to improve model performance with limited data. Specifically, the paper addresses the noise and bias issues introduced by data augmentation methods, contrasting them with model-based approaches, such as fine-tuning and metric learning, which rely heavily on related datasets. By combining Markov Chain Monte Carlo (MCMC) sampling and discriminative model ensemble strategies within a GAN framework, the proposed model adjusts generative and discriminative distributions to simulate a broader range of relevant data. Furthermore, it employs MHLoss and a reparameterized GAN ensemble to enhance stability and accelerate convergence, ultimately leading to improved classification performance on small-sample images and structured datasets. Results confirm that the MhERGAN algorithm developed in this research is highly effective for few-shot learning, offering a practical solution that bridges data scarcity with high-performing model adaptability and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助白华苍松采纳,获得10
刚刚
跳跃乘风发布了新的文献求助20
刚刚
不舍天真发布了新的文献求助20
1秒前
坚强的樱发布了新的文献求助10
1秒前
温暖以蓝发布了新的文献求助10
1秒前
1秒前
wanci应助幸福胡萝卜采纳,获得10
1秒前
1秒前
Ych发布了新的文献求助10
1秒前
gjy完成签到,获得积分10
2秒前
vision完成签到,获得积分10
2秒前
小小发布了新的文献求助10
2秒前
Katie完成签到,获得积分10
2秒前
LT发布了新的文献求助10
2秒前
3秒前
科研人完成签到,获得积分10
3秒前
FashionBoy应助彭彭采纳,获得10
3秒前
赤邪发布了新的文献求助10
4秒前
Owen应助lwei采纳,获得10
4秒前
shelly0621给shelly0621的求助进行了留言
4秒前
青木蓝完成签到,获得积分10
4秒前
4秒前
迅速泽洋完成签到,获得积分10
5秒前
dan1029完成签到,获得积分10
5秒前
小王完成签到,获得积分10
5秒前
李繁蕊发布了新的文献求助10
5秒前
6秒前
6秒前
隐形曼青应助hjj采纳,获得10
6秒前
susu完成签到,获得积分10
7秒前
8秒前
caicai发布了新的文献求助10
8秒前
无情的菲鹰完成签到,获得积分10
8秒前
兔兔完成签到 ,获得积分10
8秒前
打打应助勤奋的蜗牛采纳,获得10
8秒前
9秒前
jery完成签到,获得积分10
9秒前
乐乐应助润润轩轩采纳,获得10
10秒前
指哪打哪完成签到,获得积分10
10秒前
弄井发布了新的文献求助30
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762