Vibrating screen fault detection based on video frame prediction

计算机科学 灵敏度(控制系统) 故障检测与隔离 帧(网络) 人工智能 公制(单位) 断层(地质) 特征提取 模式识别(心理学) 实时计算 核(代数) 卷积(计算机科学) 数据挖掘 计算机视觉 工程类 执行机构 电子工程 人工神经网络 地震学 组合数学 地质学 电信 数学 运营管理
作者
Jiawei Qi,Weimin Wu,Huashun Li
出处
期刊:International Journal of Coal Preparation and Utilization [Informa]
卷期号:45 (12): 2912-2925
标识
DOI:10.1080/19392699.2024.2447761
摘要

As a key technical equipment for improving coal quality, efficiency and promoting clean and efficient utilization, it is important for vibrating screens to detect their faults quickly and accurately. Traditional vibrating screen fault detection methods usually rely on the vibration signals collected by sensors, and identify the faults through spectral analysis, time domain feature extraction, etc. However, these methods face the problems of inaccurate detection, insufficient real-time performance and poor adaptability to environmental changes under complex working conditions. To address this limitation, this paper proposes a video frame prediction model, DST-UNet, to detect the operation of vibrating screens through video. The model combines convolutional units with different kernel sizes to simultaneously extract local detail information and global structural information in the operation of vibrating screens; uses ECA as a temporal attention mechanism to improve the model's understanding and sensitivity to temporal sequences and employs convolutional units to generate spatio-temporal weights to dynamically fuse spatial and temporal features. In addition, an evaluation metric MTR is proposed to assess the model performance. The experimental results show that, compared with models such as SimVP, 3D convolution and PredRNN, the method improves the sensitivity, accuracy and processing speed of fault detection while reducing the model complexity and can realize efficient detection with limited data sets, which helps to identify equipment faults quickly and reduce the risk of damage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cui完成签到,获得积分20
刚刚
刚刚
刚刚
CipherSage应助好好糖豆儿采纳,获得10
刚刚
2秒前
HHY发布了新的文献求助10
2秒前
小马甲应助平常的雁凡采纳,获得10
3秒前
GOKU发布了新的文献求助10
3秒前
小二郎应助单于逍遥采纳,获得10
3秒前
3秒前
4秒前
4秒前
Lorrie发布了新的文献求助20
4秒前
超级李包包完成签到,获得积分10
5秒前
草莓完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
艾科研完成签到,获得积分10
6秒前
烟花应助研友_Z3vbRn采纳,获得10
6秒前
lan完成签到,获得积分10
6秒前
6秒前
6秒前
tJeremiah发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助30
8秒前
小垚发布了新的文献求助10
9秒前
longer发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
等待的亿先完成签到,获得积分10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
61发布了新的文献求助10
10秒前
领导范儿应助科研通管家采纳,获得30
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719913
求助须知:如何正确求助?哪些是违规求助? 5257911
关于积分的说明 15289746
捐赠科研通 4869590
什么是DOI,文献DOI怎么找? 2614839
邀请新用户注册赠送积分活动 1564853
关于科研通互助平台的介绍 1522032