Vibrating screen fault detection based on video frame prediction

计算机科学 灵敏度(控制系统) 故障检测与隔离 帧(网络) 人工智能 公制(单位) 断层(地质) 特征提取 模式识别(心理学) 实时计算 核(代数) 卷积(计算机科学) 数据挖掘 计算机视觉 工程类 执行机构 电子工程 人工神经网络 电信 运营管理 数学 组合数学 地震学 地质学
作者
Jiawei Qi,Weimin Wu,Huashun Li
出处
期刊:International Journal of Coal Preparation and Utilization [Informa]
卷期号:: 1-14
标识
DOI:10.1080/19392699.2024.2447761
摘要

As a key technical equipment for improving coal quality, efficiency and promoting clean and efficient utilization, it is important for vibrating screens to detect their faults quickly and accurately. Traditional vibrating screen fault detection methods usually rely on the vibration signals collected by sensors, and identify the faults through spectral analysis, time domain feature extraction, etc. However, these methods face the problems of inaccurate detection, insufficient real-time performance and poor adaptability to environmental changes under complex working conditions. To address this limitation, this paper proposes a video frame prediction model, DST-UNet, to detect the operation of vibrating screens through video. The model combines convolutional units with different kernel sizes to simultaneously extract local detail information and global structural information in the operation of vibrating screens; uses ECA as a temporal attention mechanism to improve the model's understanding and sensitivity to temporal sequences and employs convolutional units to generate spatio-temporal weights to dynamically fuse spatial and temporal features. In addition, an evaluation metric MTR is proposed to assess the model performance. The experimental results show that, compared with models such as SimVP, 3D convolution and PredRNN, the method improves the sensitivity, accuracy and processing speed of fault detection while reducing the model complexity and can realize efficient detection with limited data sets, which helps to identify equipment faults quickly and reduce the risk of damage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ganlou应助小谢同学采纳,获得10
1秒前
qq发布了新的文献求助10
2秒前
moon发布了新的文献求助10
3秒前
赘婿应助SJXS采纳,获得10
4秒前
夜绿发布了新的文献求助10
4秒前
5秒前
5秒前
Flynn发布了新的文献求助10
6秒前
yy发布了新的文献求助10
6秒前
李健应助Abner采纳,获得10
7秒前
qq完成签到,获得积分20
8秒前
QQ完成签到,获得积分20
8秒前
8秒前
10秒前
检检边lin完成签到,获得积分10
10秒前
12秒前
euy发布了新的文献求助10
12秒前
天天快乐应助melon采纳,获得10
12秒前
愉快的无招完成签到,获得积分10
12秒前
13秒前
zzk0307完成签到,获得积分10
13秒前
yar应助爱笑的万天采纳,获得10
14秒前
共享精神应助qq采纳,获得10
14秒前
Mimi发布了新的文献求助10
14秒前
14秒前
TQY发布了新的文献求助10
14秒前
14秒前
shiyu完成签到,获得积分10
15秒前
moon完成签到,获得积分10
15秒前
赵振辉发布了新的文献求助10
15秒前
大个应助光影采纳,获得10
16秒前
17秒前
18秒前
田様应助工藤新一采纳,获得10
18秒前
思源应助整齐的泽洋采纳,获得10
18秒前
霜揽月发布了新的文献求助10
19秒前
YingjiaHu发布了新的文献求助10
19秒前
hanyang965发布了新的文献求助10
20秒前
Abner发布了新的文献求助10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310354
求助须知:如何正确求助?哪些是违规求助? 2943290
关于积分的说明 8513642
捐赠科研通 2618527
什么是DOI,文献DOI怎么找? 1431125
科研通“疑难数据库(出版商)”最低求助积分说明 664383
邀请新用户注册赠送积分活动 649580