Environmental concerns are driving the development of eco-friendly and effective methods for contaminant monitoring and remediation. In this study, a lanthanide porphyrin-based MOF with dual fluorescence sensing and photocatalytic properties was synthesized and applied for the detection and combined removal of Cr(VI) and ciprofloxacin (CIP). Using different excitation wavelengths, the material exhibited selective detection of Cr(VI) via fluorescence quenching and CIP through fluorescence enhancement. The variation in color intensity of Tb-MOF on 3D EEM spectra enabled simultaneous detection of both contaminants. Additionally, Tb-MOF demonstrated a synergistic removal effect, achieving over 95% removal rates of Cr(VI) and CIP within 90 min, with consistent sensing and catalytic performance across four cycles. Mechanistic investigations revealed that (i) strong coordination between Tb3+ and CIP altered the surface potential of Tb-MOF, enhancing Cr(VI) adsorption; (ii) as an efficient electron acceptor, Cr(VI) promoted electron transfer and its reduction to Cr(III); and (iii) superoxide radicals generated via a type I mechanism played a key role in CIP degradation. This research underscores the potential of Tb-MOF as a multifunctional platform for simultaneous detection and synergistic remediation of mixed pollutants.