Abstract 4141107: Genome-wide association study of aortic stiffness derived from deep learning in CMR images of 45,789 individuals identifies loci linked with cell-matrix structure

医学 全基因组关联研究 基因组 计算生物学 人工智能 心脏病学 内科学 遗传学 基因 单核苷酸多态性 基因型 计算机科学 生物
作者
Nikhil Paliwal,Albert Henry,Chris Finan,Rhodri Davies,Alun D. Hughes,Bryan Williams,Anders Mälarstig,Tom Lumbers,Aaron Hingorani
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:150 (Suppl_1)
标识
DOI:10.1161/circ.150.suppl_1.4141107
摘要

Background: Aortic stiffness is associated with increased risk of cardiovascular events. Deep learning on large cardiac magnetic resonance (CMR) imaging samples has enabled detailed characterization of cardiac shape and function for use in genome-wide association studies (GWAS), leading to improved understanding of genetic aetiology of cardiovascular diseases (CVDs). Aim: We present a novel CMR-based pressure-independent measure of aortic stiffness, identify genetic factors and biological determinants using GWAS analysis of CMR imaging data from the UK Biobank. Methods: A pre-trained neural network was used to segment CMR images of participants in the UK Biobank to quantify ascending aorta diameter, which together with contemporaneous systolic and diastolic blood pressure measurements were used to calculate a pressure-independent measure of aortic stiffness ( β 0 ). The measurement assumes an exponential relationship between pressure and aortic diameter. We performed a GWAS on β 0 in 45,789 participants of European ancestry, excluding individuals with a prior history of CVDs. We performed stepwise conditional joint analysis to identify conditionally independent lead variants, and then defined a locus based on a 500kb flanking region centered on the variant. For each locus, we evaluated and combined scores from four complimentary approaches: variant-to-gene, polygenic priority score, gene-based association test and nearest gene. Candidate gene with the highest aggregate score was identified as the putative effector gene. We performed a pathway enrichment analysis for putative effector gene to identify potential biological pathways involving β 0 . Results: We identified 17 independent lead variants from the GWAS (Figure A). We were able to identify putative effector genes at 16 of 17 genomic loci (Figure B, one locus was not resolved). Among the putative effectors were ELN and LTBP4, genes implicated in elastin fiber formation pathway (p=1.9E-2); ELN, HAS2 and LTBP4 associated with extracellular matrix assembly pathway (p=7.5E-3), and ULK4, ARHGAP24, ELN, HAS2, SVIL, ARHGAP22, CDH13, SMG6 , and LTBP4 linked to regulation of cellular component organization (p=2.6E-2). Conclusion: A GWAS of CMR-derived aortic stiffness identified 17 independent loci, suggesting its links with genetic influences on extracellular matrix and cellular component organization. These findings provide insights into the determinants of aortic stiffness that may inform future mechanistic studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lalala发布了新的文献求助10
1秒前
彭于晏应助是否采纳,获得30
3秒前
5秒前
个性的振家完成签到,获得积分10
5秒前
老解发布了新的文献求助10
6秒前
sci来来来发布了新的文献求助10
6秒前
ca0ca0发布了新的文献求助30
6秒前
7秒前
silence63完成签到,获得积分10
7秒前
清清佑佑发布了新的文献求助30
8秒前
岂巳发布了新的文献求助10
8秒前
xlw完成签到,获得积分10
9秒前
红橙黄绿蓝靛紫111完成签到,获得积分10
10秒前
10秒前
12秒前
吃猫的鱼发布了新的文献求助10
13秒前
13秒前
14秒前
kumo完成签到 ,获得积分10
14秒前
14秒前
李志远关注了科研通微信公众号
14秒前
雨yu发布了新的文献求助10
15秒前
河水弯弯发布了新的文献求助10
15秒前
lalala应助sci来来来采纳,获得10
16秒前
善良的火完成签到 ,获得积分10
16秒前
bobones发布了新的文献求助10
16秒前
隐形曼青应助俭朴的猫咪采纳,获得10
16秒前
Wanda完成签到,获得积分10
16秒前
是否发布了新的文献求助30
17秒前
小余发布了新的文献求助30
17秒前
LDY完成签到,获得积分20
17秒前
Hungrylunch应助lzw123456采纳,获得40
18秒前
18秒前
Lucas应助岂巳采纳,获得10
19秒前
yep完成签到,获得积分10
20秒前
20秒前
21秒前
林菲菲完成签到,获得积分10
21秒前
ding应助june采纳,获得10
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479351
求助须知:如何正确求助?哪些是违规求助? 3070006
关于积分的说明 9116371
捐赠科研通 2761742
什么是DOI,文献DOI怎么找? 1515526
邀请新用户注册赠送积分活动 700958
科研通“疑难数据库(出版商)”最低求助积分说明 699951