电子显微镜
扫描电子显微镜
电子
羽流
材料科学
扫描透射电子显微镜
电子束诱导沉积
纳米技术
环境扫描电子显微镜
常规透射电子显微镜
光学
物理
透射电子显微镜
核物理学
热力学
作者
Francis M. Alcorn,Christopher Perez,Eric J. Smoll,Lauren Hoang,Frederick U. Nitta,Andrew J. Mannix,A. Alec Talin,C.Y. Nakakura,David W. Chandler,Suhas Kumar
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-11-27
标识
DOI:10.1021/acsnano.4c10527
摘要
Scanning electron microscopy (SEM), a century-old technique, is today a ubiquitous method of imaging the surface of nanostructures. However, most SEM detectors simply count the number of secondary electrons from a material of interest, and thereby overlook the rich material information contained within them. Here, by simple modifications to a standard SEM tool, we resolve the momentum and energy information on secondary electrons by directly imaging the electron plume generated by the electron beam of the SEM. Leveraging these spectroscopic imaging capabilities, our technique is able to image lateral electric fields across a prototypical silicon p–n junctions and to distinguish differently doped regions, even when buried beyond depths typically accessible by SEM. Intriguingly, the subsurface sensitivity of this technique reveals unexpectedly strong surface band bending within nominally passivated semiconductor structures, providing useful insights for complex layered component designs, in which interfacial dynamics dictate device operation. These capabilities for noninvasive, multimodal probing of complicated electronic components are crucial in today's electronic manufacturing but is largely inaccessible even with sophisticated techniques. These results show that seemingly simple SEM can be extended to probe complex and useful material properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI