Artificial meerkat algorithm: a new metaheuristic algorithm for solving optimization problems

元启发式 算法 计算机科学 优化算法 数学优化 数学
作者
Xiaowei Wang
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (12): 125280-125280
标识
DOI:10.1088/1402-4896/ad91f2
摘要

Abstract In this study, a novel artificial meerkat optimization algorithm (AMA) is proposed to simulate the cooperative behaviors of meerkat populations. The AMA algorithm is designed with two sub-populations, multiple search strategies, a multi-stage elimination mechanism, and a combination of information sharing and greedy selection strategies. Drawing inspiration from the intra-population learning behavior, the algorithm introduces two search mechanisms: single-source learning and multi-source learning. Additionally, inspired by the sentinel behavior of meerkat populations, a search strategy is proposed that combines Gaussian and Lévy variations. Furthermore, inspired by the inter-population aggression behavior of meerkat populations, the AMA algorithm iteratively applies these four search strategies, retaining the most suitable strategy while eliminating others to enhance its applicability across complex optimization problems. Experimental results comparing the AMA algorithm with seven state-of-the-art algorithms on 53 test functions demonstrate that the AMA algorithm outperforms others on 71.7% of the test functions. Moreover, experiments on challenging engineering optimization problems confirm the superior performance of the AMA algorithm over alternative algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助精明的问芙采纳,获得10
刚刚
2秒前
2秒前
我是老大应助batmanrobin采纳,获得10
3秒前
3秒前
复杂孤兰完成签到,获得积分10
4秒前
5秒前
小文发布了新的文献求助10
6秒前
7秒前
科研通AI5应助快乐友易采纳,获得10
7秒前
7秒前
7秒前
wan完成签到 ,获得积分10
8秒前
kxy完成签到,获得积分10
9秒前
要减肥的乐双完成签到 ,获得积分10
9秒前
10秒前
10秒前
牛牛发布了新的文献求助10
10秒前
11秒前
11秒前
清欢完成签到,获得积分10
11秒前
追风发布了新的文献求助30
11秒前
12秒前
繁星发布了新的文献求助10
13秒前
123发布了新的文献求助10
13秒前
the兰发布了新的文献求助10
13秒前
14秒前
一页书完成签到,获得积分10
14秒前
16秒前
枝枝发布了新的文献求助10
16秒前
枯藤老树昏呀完成签到,获得积分10
16秒前
18秒前
18秒前
19秒前
19秒前
19秒前
Anquan发布了新的文献求助10
20秒前
20秒前
lwk205应助壮观的迎海采纳,获得20
22秒前
热心乌完成签到,获得积分0
23秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477079
求助须知:如何正确求助?哪些是违规求助? 3068557
关于积分的说明 9108573
捐赠科研通 2760002
什么是DOI,文献DOI怎么找? 1514563
邀请新用户注册赠送积分活动 700319
科研通“疑难数据库(出版商)”最低求助积分说明 699453