Identification of Programmed Cell Death-related Biomarkers for the Potential Diagnosis and Treatment of Osteoporosis

列线图 基因 程序性细胞死亡 计算生物学 生物 Lasso(编程语言) 生物信息学 细胞凋亡 遗传学 医学 计算机科学 肿瘤科 万维网
作者
Yancheng Huo,Meng Guo,Yihan Li,Xingchen Yao,Qingxian Tian,Tie Liu
出处
期刊:Endocrine, metabolic & immune disorders [Bentham Science]
卷期号:25
标识
DOI:10.2174/0118715303326112241021061805
摘要

Background: Osteoporosis (OP) is a skeletal condition characterized by increased susceptibility to fractures. Programmed cell death (PCD) is the orderly process of cells ending their own life that has not been thoroughly explored in relation to OP. Objective: This study is to investigate PCD-related genes in OP, shedding light on potential mechanisms underlying the disease. Methods: Public datasets (GSE56814 and GSE56815) were analyzed to identify differentially expressed genes (DEGs). We employed the least absolute shrinkage and selection operator (LASSO), Boruta, and random forest (RF) algorithms to pinpoint hub PCD-related genes in OP and construct a predictive nomogram model. The performance of the model was validated through ROC curve analysis, calibration curves, and decision curve analysis. Additionally, transcription factor (TF) interaction analysis and functional enrichment analysis were conducted to explore the regulatory networks and biological pathways involved. Results: We identified 161 DEGs, with 30 prominently associated with PCD. Five hub genes, PDPK1, MAP1LC3B, ZFP36, DRAM1, and MPO, were highlighted as particularly significant. A predictive nomogram integrating these genes demonstrated high accuracy (AUC) in forecasting OP risk, with an AUC of 0.911 in the GSE56815 dataset. The validation confirmed the gene model efficacy in differentiating OP risk and clinical applicability. The subsequent TF-gene interaction analyses revealed that these hub genes are regulated by multiple TFs, indicating their central role in OP pathology. Functional enrichment analysis of the hub genes indicated significant involvement in apoptosis, autophagy, and immune response pathways. result: We identified 161 DEGs, with 30 prominently associated with PCD. Five hub genes, PDPK1, MAP1LC3B, ZFP36, DRAM1, and MPO, were highlighted as particularly significant. A predictive nomogram integrating these genes demonstrated high accuracy (AUC of 0.911 in dataset GSE56815) in forecasting OP risk. Validation confirmed the gene model's efficacy in differentiating OP risk and clinical applicability. Conclusion: This study identified PDPK1, MAP1LC3B, ZFP36, DRAM1, and MPO as potential biomarkers and proposes a nomogram based on hub genes for predicting osteoporosis risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跨进行发布了新的文献求助10
2秒前
脑洞疼应助幸福纹采纳,获得10
2秒前
3秒前
3秒前
可乐SAMA完成签到,获得积分10
4秒前
xinyue完成签到,获得积分20
5秒前
可爱的函函应助CCCr采纳,获得10
5秒前
5秒前
罗是一完成签到,获得积分10
5秒前
6秒前
6秒前
turbohero完成签到,获得积分10
7秒前
英俊的铭应助hanggai采纳,获得10
7秒前
7秒前
7秒前
7秒前
领导范儿应助pu采纳,获得10
7秒前
慕青应助PXP采纳,获得10
8秒前
sa完成签到,获得积分10
8秒前
tianyy发布了新的文献求助10
9秒前
9秒前
10秒前
汉堡包应助te0813采纳,获得10
10秒前
Owen应助嫩嫩采纳,获得10
10秒前
read发布了新的文献求助10
10秒前
善学以致用应助LLeaf采纳,获得30
10秒前
11秒前
优秀笑寒完成签到,获得积分10
11秒前
一叶知秋发布了新的文献求助10
11秒前
Lucas应助nekoneko采纳,获得10
12秒前
mmyhn发布了新的文献求助10
12秒前
朴素的天蓝完成签到,获得积分10
12秒前
Le完成签到,获得积分10
13秒前
雨霧雲完成签到,获得积分10
13秒前
llyy发布了新的文献求助30
14秒前
15秒前
15秒前
15秒前
酷波er应助lucy采纳,获得10
15秒前
吃饭加汤完成签到,获得积分10
15秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328382
求助须知:如何正确求助?哪些是违规求助? 2958441
关于积分的说明 8590329
捐赠科研通 2636676
什么是DOI,文献DOI怎么找? 1443163
科研通“疑难数据库(出版商)”最低求助积分说明 668515
邀请新用户注册赠送积分活动 655740