Identification of Programmed Cell Death-related Biomarkers for the Potential Diagnosis and Treatment of Osteoporosis

列线图 基因 程序性细胞死亡 计算生物学 生物 Lasso(编程语言) 生物信息学 细胞凋亡 遗传学 医学 计算机科学 肿瘤科 万维网
作者
Yancheng Huo,Meng Guo,Yihan Li,Xingchen Yao,Qingxian Tian,Tie Liu
出处
期刊:Endocrine, metabolic & immune disorders [Bentham Science Publishers]
卷期号:25
标识
DOI:10.2174/0118715303326112241021061805
摘要

Background: Osteoporosis (OP) is a skeletal condition characterized by increased susceptibility to fractures. Programmed cell death (PCD) is the orderly process of cells ending their own life that has not been thoroughly explored in relation to OP. Objective: This study is to investigate PCD-related genes in OP, shedding light on potential mechanisms underlying the disease. Methods: Public datasets (GSE56814 and GSE56815) were analyzed to identify differentially expressed genes (DEGs). We employed the least absolute shrinkage and selection operator (LASSO), Boruta, and random forest (RF) algorithms to pinpoint hub PCD-related genes in OP and construct a predictive nomogram model. The performance of the model was validated through ROC curve analysis, calibration curves, and decision curve analysis. Additionally, transcription factor (TF) interaction analysis and functional enrichment analysis were conducted to explore the regulatory networks and biological pathways involved. Results: We identified 161 DEGs, with 30 prominently associated with PCD. Five hub genes, PDPK1, MAP1LC3B, ZFP36, DRAM1, and MPO, were highlighted as particularly significant. A predictive nomogram integrating these genes demonstrated high accuracy (AUC) in forecasting OP risk, with an AUC of 0.911 in the GSE56815 dataset. The validation confirmed the gene model efficacy in differentiating OP risk and clinical applicability. The subsequent TF-gene interaction analyses revealed that these hub genes are regulated by multiple TFs, indicating their central role in OP pathology. Functional enrichment analysis of the hub genes indicated significant involvement in apoptosis, autophagy, and immune response pathways. result: We identified 161 DEGs, with 30 prominently associated with PCD. Five hub genes, PDPK1, MAP1LC3B, ZFP36, DRAM1, and MPO, were highlighted as particularly significant. A predictive nomogram integrating these genes demonstrated high accuracy (AUC of 0.911 in dataset GSE56815) in forecasting OP risk. Validation confirmed the gene model's efficacy in differentiating OP risk and clinical applicability. Conclusion: This study identified PDPK1, MAP1LC3B, ZFP36, DRAM1, and MPO as potential biomarkers and proposes a nomogram based on hub genes for predicting osteoporosis risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助虚幻初之采纳,获得10
1秒前
2秒前
靖123456发布了新的文献求助10
2秒前
机会发布了新的文献求助10
2秒前
NMZN发布了新的文献求助10
3秒前
5秒前
5秒前
胡胡胡发布了新的文献求助10
5秒前
靖123456完成签到,获得积分10
6秒前
pcns完成签到,获得积分10
7秒前
贪玩白萱发布了新的文献求助10
7秒前
李健的小迷弟应助Moihan采纳,获得10
8秒前
linkman发布了新的文献求助10
8秒前
james发布了新的文献求助30
8秒前
9秒前
归陌完成签到 ,获得积分10
9秒前
9秒前
斯文败类应助柔弱曼冬采纳,获得10
10秒前
10秒前
11秒前
11秒前
12秒前
skr完成签到,获得积分10
12秒前
12秒前
李萌萌发布了新的文献求助20
13秒前
靓丽的素发布了新的文献求助10
14秒前
奋斗完成签到 ,获得积分10
14秒前
sian发布了新的文献求助30
15秒前
16秒前
鳄鱼队长完成签到,获得积分10
16秒前
Pepsi完成签到,获得积分10
17秒前
小蘑菇应助贪狼先森采纳,获得10
17秒前
17秒前
19秒前
xdedd完成签到,获得积分10
19秒前
20秒前
23秒前
西陆完成签到,获得积分10
23秒前
满意的柏柳完成签到 ,获得积分10
23秒前
柔弱曼冬发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956295
求助须知:如何正确求助?哪些是违规求助? 3502477
关于积分的说明 11107954
捐赠科研通 3233164
什么是DOI,文献DOI怎么找? 1787196
邀请新用户注册赠送积分活动 870506
科研通“疑难数据库(出版商)”最低求助积分说明 802105