Identification of Programmed Cell Death-related Biomarkers for the Potential Diagnosis and Treatment of Osteoporosis

列线图 基因 程序性细胞死亡 计算生物学 生物 Lasso(编程语言) 生物信息学 细胞凋亡 遗传学 医学 计算机科学 肿瘤科 万维网
作者
Yancheng Huo,Meng Guo,Yihan Li,Xingchen Yao,Qingxian Tian,Tie Liu
出处
期刊:Endocrine, metabolic & immune disorders [Bentham Science]
卷期号:25
标识
DOI:10.2174/0118715303326112241021061805
摘要

Background: Osteoporosis (OP) is a skeletal condition characterized by increased susceptibility to fractures. Programmed cell death (PCD) is the orderly process of cells ending their own life that has not been thoroughly explored in relation to OP. Objective: This study is to investigate PCD-related genes in OP, shedding light on potential mechanisms underlying the disease. Methods: Public datasets (GSE56814 and GSE56815) were analyzed to identify differentially expressed genes (DEGs). We employed the least absolute shrinkage and selection operator (LASSO), Boruta, and random forest (RF) algorithms to pinpoint hub PCD-related genes in OP and construct a predictive nomogram model. The performance of the model was validated through ROC curve analysis, calibration curves, and decision curve analysis. Additionally, transcription factor (TF) interaction analysis and functional enrichment analysis were conducted to explore the regulatory networks and biological pathways involved. Results: We identified 161 DEGs, with 30 prominently associated with PCD. Five hub genes, PDPK1, MAP1LC3B, ZFP36, DRAM1, and MPO, were highlighted as particularly significant. A predictive nomogram integrating these genes demonstrated high accuracy (AUC) in forecasting OP risk, with an AUC of 0.911 in the GSE56815 dataset. The validation confirmed the gene model efficacy in differentiating OP risk and clinical applicability. The subsequent TF-gene interaction analyses revealed that these hub genes are regulated by multiple TFs, indicating their central role in OP pathology. Functional enrichment analysis of the hub genes indicated significant involvement in apoptosis, autophagy, and immune response pathways. result: We identified 161 DEGs, with 30 prominently associated with PCD. Five hub genes, PDPK1, MAP1LC3B, ZFP36, DRAM1, and MPO, were highlighted as particularly significant. A predictive nomogram integrating these genes demonstrated high accuracy (AUC of 0.911 in dataset GSE56815) in forecasting OP risk. Validation confirmed the gene model's efficacy in differentiating OP risk and clinical applicability. Conclusion: This study identified PDPK1, MAP1LC3B, ZFP36, DRAM1, and MPO as potential biomarkers and proposes a nomogram based on hub genes for predicting osteoporosis risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
3秒前
3秒前
橘柚完成签到 ,获得积分10
4秒前
zmmmm发布了新的文献求助10
4秒前
领导范儿应助温言采纳,获得10
4秒前
思源应助OvO采纳,获得10
6秒前
迷糊发布了新的文献求助30
7秒前
LY发布了新的文献求助10
8秒前
zzz完成签到,获得积分10
8秒前
KimJongUn完成签到,获得积分10
8秒前
10秒前
10秒前
zy完成签到,获得积分10
11秒前
开心果子发布了新的文献求助10
11秒前
云痴子完成签到,获得积分10
12秒前
SciGPT应助粥粥采纳,获得10
12秒前
12秒前
12秒前
13秒前
苏源完成签到,获得积分10
13秒前
wu关闭了wu文献求助
13秒前
13秒前
14秒前
14秒前
15秒前
15秒前
15秒前
Shawn完成签到,获得积分10
16秒前
yltstt完成签到,获得积分10
17秒前
李小新发布了新的文献求助10
17秒前
成梦发布了新的文献求助10
18秒前
乐乐应助xuex1采纳,获得10
18秒前
蜂鸟5156发布了新的文献求助10
18秒前
李爱国应助VDC采纳,获得10
19秒前
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808